8 research outputs found

    Verification of Multi-Agent Properties in Electronic Voting: A Case Study

    Full text link
    Formal verification of multi-agent systems is hard, both theoretically and in practice. In particular, studies that use a single verification technique typically show limited efficiency, and allow to verify only toy examples. Here, we propose some new techniques and combine them with several recently developed ones to see what progress can be achieved for a real-life scenario. Namely, we use fixpoint approximation, domination-based strategy search, partial order reduction, and parallelization to verify heterogeneous scalable models of the Selene e-voting protocol. The experimental results show that the combination allows to verify requirements for much more sophisticated models than previously

    Optimal Scheduling of Agents in ADTrees: Specialised Algorithm and Declarative Models

    Full text link
    Expressing attack-defence trees in a multi-agent setting allows for studying a new aspect of security scenarios, namely how the number of agents and their task assignment impact the performance, e.g. attack time, of strategies executed by opposing coalitions. Optimal scheduling of agents' actions, a non-trivial problem, is thus vital. We discuss associated caveats and propose an algorithm that synthesises such an assignment, targeting minimal attack time and using the minimal number of agents for a given attack-defence tree. We also investigate an alternative approach for the same problem using Rewriting Logic, starting with a simple and elegant declarative model, whose correctness (in terms of schedule's optimality) is self-evident. We then refine this specification, inspired by the design of our specialised algorithm, to obtain an efficient system that can be used as a playground to explore various aspects of attack-defence trees. We compare the two approaches on different benchmarks.Comment: arXiv admin note: text overlap with arXiv:2101.0683

    Association between the Area of the Highest Flank Temperature and Concentrations of Reproductive Hormones during Pregnancy in Polish Konik Horses—A Preliminary Study

    No full text
    Determination of the pregnancy status is one of the most important factors for effective pregnancy management. Knowledge of the stage of pregnancy is important to interpret many of the reproductive hormones’ concentrations, including progesterone (P4), estrone sulfate (E1S), 17-ß estradiol (E2), and relaxin (REL). However, it is limited in wildlife or captive equids that cannot be handled. Reproductive hormones affect regional blood flow, the proliferation of tissues, and local metabolism intensity. Therefore, this preliminary study aimed to assess changes in thermal features of the abdomen lateral surface and concentrations of reproductive hormones in Polish native pregnant mares. The study was carried out on 14 non-pregnant and 26 pregnant Polish Konik mares during eleven months of pregnancy. Infrared thermography was conducted to image the lateral surface of mares’ abdomen (Px1) and flank area (Px2); P4, E1S, E2, and REL concentrations in serum were also determined. The evidence of the association between the area with the highest temperatures (Area of Tmax) and serum concentrations of P4 (the slope = 1.373; p = 0.9245) and REL (the slope = 1.342; p = 0.4324) were noted dependent across months of pregnancy. Measures of superficial body temperatures were found to change monthly, similarly to ambient temperatures, with no evidence of coincidence with changes in reproductive hormone concentrations. Individual thermal characteristics of the lateral surface of the abdomen differed between pregnant and non-pregnant mares in other periods. Differences in maximal and average temperature and Area of Tmax were observed from the sixth month of pregnancy, and those in minimal temperature were observed from the eighth month

    Characteristics of the Donkey’s Dorsal Profile in Relation to Its Functional Body Condition Assessment

    No full text
    As the breeding of donkeys has increased due to different types of use, welfare evaluation importance increases. This equid’s welfare state has been described using body condition indicators and the geometric morphometrics method. However, the dorsal profile has not yet been assessed in donkeys. In this study, the body condition score (BCS), fatty neck score (FNS), dental condition score (DCS), sex, and breed were used as criteria of dorsal profile deformations. Photographs of 40 donkeys were analyzed using geometric morphometrics. Within the entire set of dorsal profiles, the variance of the first three principal components (PCs) was PC1 = 37.41%, PC2 = 23.43%, and PC3 = 13.34%. The dorsal profiles displayed deformation as an effect of FNS and BCS on size (FNS p = 0.012; BCS p = 0.024) and shape (FNS p < 0.0001; BCS p < 0.0001), rather than as an effect of DCS (p < 0.0001), sex (p = 0.0264), and breed (p < 0.0001) only on shape. The highest distances among the categories (Mahalanobis distances: MD ≄ 13.26; Procrustes distances: PD ≄ 0.044) were noted for FNS. The lowest distances were noted between jennets and males (MD = 4.58; PD = 0.012) and between BCS 1 and BCS 2 (MD = 4.70; PD = 0.018). Donkeys’ body condition affects their dorsal profile and both FNS and BCS measurements should be considered when a donkey’s dorsal profile is investigated

    Advances in Thermal Image Analysis for the Detection of Pregnancy in Horses Using Infrared Thermography

    No full text
    Infrared thermography (IRT) was applied as a potentially useful tool in the detection of pregnancy in equids, especially native or wildlife. IRT measures heat emission from the body surface, which increases with the progression of pregnancy as blood flow and metabolic activity in the uterine and fetal tissues increase. Conventional IRT imaging is promising; however, with specific limitations considered, this study aimed to develop novel digital processing methods for thermal images of pregnant mares to detect pregnancy earlier with higher accuracy. In the current study, 40 mares were divided into non-pregnant and pregnant groups and imaged using IRT. Thermal images were transformed into four color models (RGB, YUV, YIQ, HSB) and 10 color components were separated. From each color component, features of image texture were obtained using Histogram Statistics and Grey-Level Run-Length Matrix algorithms. The most informative color/feature combinations were selected for further investigation, and the accuracy of pregnancy detection was calculated. The image texture features in the RGB and YIQ color models reflecting increased heterogeneity of image texture seem to be applicable as potential indicators of pregnancy. Their application in IRT-based pregnancy detection in mares allows for earlier recognition of pregnant mares with higher accuracy than the conventional IRT imaging technique

    Comparison of Donkey, Pony, and Horse Dorsal Profiles and Head Shapes Using Geometric Morphometrics

    No full text
    Since donkey breeding has increased due to their variety of uses, welfare evaluation has become more important. This study aimed to compare donkey, pony, and horse dorsal profiles and head shapes using geometric morphometrics (GM). Photographs of 14 donkeys, 14 ponies, and 14 horses were analyzed using GM, including the sliding semilandmarks method. The variations in the first three principal components (PCs) were PC1: 57.16%, PC2: 16.05%, and PC3: 8.31% for the dorsal profiles and PC1: 44.77%, PC2: 13.46%, and PC3: 7.66% for the head shapes. Both the dorsal profiles and head shapes differed between donkeys and horses (p p > 0.05). Moreover, both the dorsal profiles and head shapes differed in size between ponies and horses (p p > 0.05). Higher Mahalanobis and Procrustes distances were noted between donkeys and horses as well between donkeys and ponies than between ponies and horses. The use of geometric morphometrics revealed the differences in the dorsal profiles and head shapes between the studied equids. These differences should be taken into account when adapting welfare scales and methods from horses to donkeys

    Application of the Two-Dimensional Entropy Measures in the Infrared Thermography-Based Detection of Rider: Horse Bodyweight Ratio in Horseback Riding

    No full text
    As obesity is a serious problem in the human population, overloading of the horse’s thoracolumbar region often affects sport and school horses. The advances in using infrared thermography (IRT) to assess the horse’s back overload will shortly integrate the IRT-based rider-horse fit into everyday equine practice. This study aimed to evaluate the applicability of entropy measures to select the most informative measures and color components, and the accuracy of rider:horse bodyweight ratio detection. Twelve horses were ridden by each of the six riders assigned to the light, moderate, and heavy groups. Thermal images were taken pre- and post-exercise. For each thermal image, two-dimensional sample (SampEn), fuzzy (FuzzEn), permutation (PermEn), dispersion (DispEn), and distribution (DistEn) entropies were measured in the withers and the thoracic spine areas. Among 40 returned measures, 30 entropy measures were exercise-dependent, whereas 8 entropy measures were bodyweight ratio-dependent. Moreover, three entropy measures demonstrated similarities to entropy-related gray level co-occurrence matrix (GLCM) texture features, confirming the higher irregularity and complexity of thermal image texture when horses worked under heavy riders. An application of DispEn to red color components enables identification of the light and heavy rider groups with higher accuracy than the previously used entropy-related GLCM texture features

    Selection of Image Texture Analysis and Color Model in the Advanced Image Processing of Thermal Images of Horses following Exercise

    No full text
    As the detection of horse state after exercise is constantly developing, a link between blood biomarkers and infrared thermography (IRT) was investigated using advanced image texture analysis. The aim of the study was to determine which combinations of RGB (red-green-blue), YUI (brightness-UV-components), YIQ (brightness-IQ-components), and HSB (hue-saturation-brightness) color models, components, and texture features are related to the blood biomarkers of exercise effect. Twelve Polish warmblood horses underwent standardized exercise tests for six consecutive days. Both thermal images and blood samples were collected before and after each test. All 144 obtained IRT images were analyzed independently for 12 color components in four color models using eight texture-feature approaches, including 88 features. The similarity between blood biomarker levels and texture features was determined using linear regression models. In the horses’ thoracolumbar region, 12 texture features (nine in RGB, one in YIQ, and two in HSB) were related to blood biomarkers. Variance, sum of squares, and sum of variance in the RGB were highly repeatable between image processing protocols. The combination of two approaches of image texture (histogram statistics and gray-level co-occurrence matrix) and two color models (RGB, YIQ), should be considered in the application of digital image processing of equine IRT
    corecore