12 research outputs found

    The Effect of Crataegus Fruit Pre-Treatment and Preservation Methods on the Extractability of Aroma Compounds during Liqueur Production

    No full text
    The leaves, inflorescences, and fruits of hawthorn have long been known for their therapeutic properties. A wide range of hawthorn products, including liqueurs, are manufactured, due to the technological potential of the raw material as well as the richness of its volatile compounds. This study aimed to determine the effect of the liqueur production method and various methods of fruit preservation on the quantitative and qualitative composition of volatile compounds in the liqueurs produced. Hawthorn fruits saturated with sucrose and non-saturated with sucrose, fresh or preserved through one of three methods: freezing, air-drying, and freeze-drying, were used for liqueur preparation. The samples were analyzed using a gas chromatograph–mass spectrometer. They were found to contain 54 volatile compounds classified into 12 groups of chemicals. All 54 identified volatile compounds were detected in the liqueur made from hawthorn fruits non-saturated with sucrose and preserved by freeze-drying. In this liqueur type, 12 of the identified volatile compounds occurred in the highest concentration when compared to the other treatments. Among all volatiles, the following compounds were present in the analyzed liqueurs in the highest concentrations: dodecanoic acid ethyl ester (11.782 g/100 g), lactones (6.954 g/100 g), five monoterpenes (3.18 g/100 g), two aromatic hydrocarbons (1.293 g/100 g), isobensofuran (0.67 g/100 g), alcohol—2-methyl-2-propanol (0.059 g/100 g), and malonic ester (0.055 g/100 g). Among all analyzed liqueurs, the one made from the fruits non-saturated with sucrose and frozen was characterized by the smallest diversity of volatiles, which were present in the lowest concentrations in that liqueur

    Potential Use of Hyssopus officinalis and Borago officinalis as Curing Ingredients in Pork Meat Formulations

    No full text
    The replacement of nitrites in pork meat products has been a studied issue for many years. Due to potential health threats associated with these additives, consumers tend to search for alternative meat curing methods. In this study, Hyssopus officinalis and Borago officinalis were tested for their potential to be used as colour-forming and antioxidant agents. Dry plant samples from various sources were tested for fat, protein, ash, polyphenol and nitrate content. There were significant differences between the herbs depending on source. Two control samples (containing curing salt and sodium chloride with nitrate reducing bacteria) and samples with herbs (hyssop, hyssop with nitrate reducing bacteria, borage, borage with nitrate reducing bacteria)—0.5% of the meat mass—were prepared and stored for 15 days. In the samples with herbs and bacterial cultures, a red colour was developed, the TBARS values were low and DPPH activity was strong. All the samples with herbs had lower residual nitrite levels compared to the samples with curing salt. Borage had a stronger influence on colour and antioxidant stability of the meat samples compared to hyssop. However, both herbs can be used as colour-forming and antioxidant agents along with nitrate-reducing bacteria

    The Effect of <i>Crataegus</i> Fruit Pre-Treatment and Preservation Methods on the Extractability of Aroma Compounds during Liqueur Production

    No full text
    The leaves, inflorescences, and fruits of hawthorn have long been known for their therapeutic properties. A wide range of hawthorn products, including liqueurs, are manufactured, due to the technological potential of the raw material as well as the richness of its volatile compounds. This study aimed to determine the effect of the liqueur production method and various methods of fruit preservation on the quantitative and qualitative composition of volatile compounds in the liqueurs produced. Hawthorn fruits saturated with sucrose and non-saturated with sucrose, fresh or preserved through one of three methods: freezing, air-drying, and freeze-drying, were used for liqueur preparation. The samples were analyzed using a gas chromatograph–mass spectrometer. They were found to contain 54 volatile compounds classified into 12 groups of chemicals. All 54 identified volatile compounds were detected in the liqueur made from hawthorn fruits non-saturated with sucrose and preserved by freeze-drying. In this liqueur type, 12 of the identified volatile compounds occurred in the highest concentration when compared to the other treatments. Among all volatiles, the following compounds were present in the analyzed liqueurs in the highest concentrations: dodecanoic acid ethyl ester (11.782 g/100 g), lactones (6.954 g/100 g), five monoterpenes (3.18 g/100 g), two aromatic hydrocarbons (1.293 g/100 g), isobensofuran (0.67 g/100 g), alcohol—2-methyl-2-propanol (0.059 g/100 g), and malonic ester (0.055 g/100 g). Among all analyzed liqueurs, the one made from the fruits non-saturated with sucrose and frozen was characterized by the smallest diversity of volatiles, which were present in the lowest concentrations in that liqueur

    Effect of the Drying Method and Storage Conditions on the Quality and Content of Selected Bioactive Compounds of Green Legume Vegetables

    No full text
    This study aimed to determine the effect of the drying method (freeze-drying, air-drying), storage period (12 months), and storage conditions (2–4 °C, 18–22 °C) applied to two legume species: green beans and green peas. The raw and dried materials were determined for selected physical parameters typical of dried vegetables, contents of bioactive components (vitamin C and E, total chlorophyll, total carotenoids, β-carotene, and total polyphenols), antioxidative activity against the DPPH radical, and sensory attributes (overall quality and profiles of color, texture, and palatability). Green beans had a significantly higher content of bioactive components compared to peas. Freeze-drying and cold storage conditions facilitated better retention of these compounds, i.e., by 9–39% and 3–11%, respectively. After 12 months of storage, higher retention of bioactive components, except for total chlorophyll, was determined in peas regardless of the drying method, i.e., by 38–75% in the freeze-dried product and 30–77% in the air-dried product, compared to the raw material

    Effect of Chickpea (<i>Cicer arietinum</i> L.) Flour Incorporation on Quality, Antioxidant Properties, and Bioactive Compounds of Shortbread Cookies

    No full text
    High nutritional value and antioxidant properties make chickpea flour a valuable substitute for wheat flour, although its texture-forming abilities are different. The aim of this study was to investigate the possibility of increasing the content of bioactive compounds and antioxidant properties of shortbread cookies by simple partial or complete replacement of wheat flour with chickpea flour without considerable changes in texture, color, sensory properties, or acceptability. Shortbread cookies were made from wheat flour (0% of chickpea flour), wheat flour and chickpea flour (replacement of 25%, 50%, and 75%), and chickpea flour (100%). Generally, the increase in chickpea flour share resulted in an increase in protein, fat, and ash content, as well as antioxidant properties. Polyphenol content, flavonoid content, and antioxidant activities increased three- to sixfold in shortbread cookies containing chickpea flour in comparison to wheat cookies. The level of proteins increased about 50% and the antioxidant properties were three to six times higher than in wheat cookies. Cookies containing up to 75% chickpea flour were assessed as very good or good quality, while only cookies without wheat flour were assessed as sufficient quality. It could be concluded that part of the wheat flour content in shortbread cookies can be replaced by chickpea flour. Application of a 25% proportion of chickpea flour increases physicochemical properties without changes in sensory properties. Sensory quality was up to 75% lower, but antioxidant properties were increased. However, complete replacement of wheat flour in shortbread cookies without changing the recipe resulted in a product of slightly lower sensory quality

    Usefulness of Changes in the Food Safety System – on the Basis of the Audits of NIK, EC and Own Studies

    No full text
    Polski system nadzoru nad bezpieczeństwem żywności jest wieloinstytucjonalny. Powołanie Państwowej Inspekcji Bezpieczeństwa Żywności, dzięki konsolidacji Inspekcji Weterynaryjnej, Państwowej Inspekcji Ochrony Roślin i Nasiennictwa, Inspekcji Jakości Handlowej Artykułów Rolno-Spożywczych oraz przeniesienie do nowego podmiotu części zadań z Państwowej Inspekcji Sanitarnej, Inspekcji Handlowej, a w zakresie dotyczącym kontroli stosowania i składowania nawozów także zadań Inspekcji Ochrony Środowiska, posłużyłoby ujednoliceniu procesów kontrolnych i monitorujących, ograniczyło niejasności kompetencyjne i decyzyjne oraz poprawiło bezpieczeństwo żywności w Polsce. Biorąc pod uwagę wyniki kontroli przeprowadzonych przez Najwyższą Izbę Kontroli oraz audytów Dyrekcji Generalnej ds. Zdrowia i Bezpieczeństwa Żywności Komisji Europejskiej, jak również obserwacje własne, przedstawiono celowość zmian istniejącego systemu kontroli bezpieczeństwa żywności w Polsce.The Polish system for food safety supervision comprises numerous institutions. The establishment of the State Food Safety Inspectorate (Polish: Państwowa Inspekcja Bezpieczeństwa Żywności), thanks to consolidation of the Veterinary Inspectorate, the State Inspectorate of Protection of Plants and Seeds, the Inspectorate for Trade Quality of Food Produce, as well as to the transfer of several responsibilities of the State Sanitary Inspectorate, the Trade Inspectorate and the Environment Protection Inspectorate – with regard to using and storing of fertilizers – to the new institution, would lead to unification of supervision and monitoring processes. It would also reduce the blurred competence and decision-making responsibilities, ultimately adding to the improvement of food safety in Poland. Considering the results of the audits conducted by the Supreme Audit Office and by the Directorate-General for Health and Food Safety of the European Commission, as well as their own observations, the authors of the article have discussed the justifications for changes in the current food safety system in Poland

    Red Arils of <i>Taxus baccata</i> L.—A New Source of Valuable Fatty Acids and Nutrients

    No full text
    The aim of this study, focused on the nutritional value of wild berries, was to determine the contents of macronutrients, profiles of fatty (FAs) and amino acids (AAs), and the contents of selected elements in red arils (RA) of Taxus baccata L., grown in diverse locations in Poland. Protein (1.79–3.80 g/100 g) and carbohydrate (18.43–19.30 g/100 g) contents of RAs were higher than in many cultivated berries. RAs proved to be a source of lipids (1.39–3.55 g/100 g). Ten out of 18 AAs detected in RAs, mostly branched-chain AAs, were essential AAs (EAAs). The EAAs/total AAs ratio approximating were found in animal foods. Lipids of RA contained seven PUFAs, including those from n-3 family (19.20–28.20 g/100 g FA). Polymethylene-interrupted FAs (PMI-FAs), pinolenic 18:3Δ5,9,12; sciadonic 20:3Δ5,11,14, and juniperonic 20:4Δ5,11,14,17, known as unique for seeds of gymnosperms, were found in RAs. RAs may represent a novel dietary source of valuable n-3 PUFAs and the unique PMI-FAs. The established composition of RAs suggests it to become a new source of functional foods, dietary supplements, and valuable ingredients. Because of the tendency to accumulate toxic metals, RAs may be regarded as a valuable indicator of environmental contamination. Thus, the levels of toxic trace elements (Al, Ni, Cd) have to be determined before collecting fruits from natural habitats

    Red Arils of Taxus baccata L.—A New Source of Valuable Fatty Acids and Nutrients

    No full text
    The aim of this study, focused on the nutritional value of wild berries, was to determine the contents of macronutrients, profiles of fatty (FAs) and amino acids (AAs), and the contents of selected elements in red arils (RA) of Taxus baccata L., grown in diverse locations in Poland. Protein (1.79–3.80 g/100 g) and carbohydrate (18.43–19.30 g/100 g) contents of RAs were higher than in many cultivated berries. RAs proved to be a source of lipids (1.39–3.55 g/100 g). Ten out of 18 AAs detected in RAs, mostly branched-chain AAs, were essential AAs (EAAs). The EAAs/total AAs ratio approximating were found in animal foods. Lipids of RA contained seven PUFAs, including those from n-3 family (19.20–28.20 g/100 g FA). Polymethylene-interrupted FAs (PMI-FAs), pinolenic 18:3Δ5,9,12; sciadonic 20:3Δ5,11,14, and juniperonic 20:4Δ5,11,14,17, known as unique for seeds of gymnosperms, were found in RAs. RAs may represent a novel dietary source of valuable n-3 PUFAs and the unique PMI-FAs. The established composition of RAs suggests it to become a new source of functional foods, dietary supplements, and valuable ingredients. Because of the tendency to accumulate toxic metals, RAs may be regarded as a valuable indicator of environmental contamination. Thus, the levels of toxic trace elements (Al, Ni, Cd) have to be determined before collecting fruits from natural habitats

    Transcriptomic and metabolic studies on the role of inorganic and organic iodine compounds in lettuce plants

    No full text
    Abstract Iodine (I) is considered a beneficial element or even micronutrient for plants. The aim of this study was to determine the molecular and physiological processes of uptake, transport, and metabolism of I applied to lettuce plants. KIO3, KIO3 + salicylic acid, 5-iodosalicylic acid and 3,5-diiodosalicylic acid were applied. RNA-sequencing was executed using 18 cDNA libraries constructed separately for leaves and roots from KIO3, SA and control plants. De novo transcriptome assembly generated 1937.76 million sequence reads resulting in 27,163 transcripts with N50 of 1638 bp. 329 differentially expressed genes (DEGs) in roots were detected after application of KIO3, out of which 252 genes were up-regulated, and 77 were down-regulated. In leaves, 9 genes revealed differential expression pattern. DEGs analysis indicated its involvement in such metabolic pathways and processes as: chloride transmembrane transport, phenylpropanoid metabolism, positive regulation of defense response and leaf abscission, and also ubiquinone and other terpenoid-quinone biosynthesis, protein processing in endoplasmic reticulum, circadian rhythm including flowering induction as well as a putative PDTHA (i.e. Plant Derived Thyroid Hormone Analogs) metabolic pathway. qRT-PCR of selected genes suggested their participation in the transport and metabolism of iodine compounds, biosynthesis of primary and secondary metabolites, PDTHA pathway and flowering induction
    corecore