3 research outputs found
Wyznaczanie grubości warstw BN na podłożu Al2O3 za pomocą spektroskopii FT-IR
Hexagonal boron nitride (h-BN) is an attractive material for applications in electronics. The technology of devices based on BN requires non-destructive and fast methods of controlling the parameters of the produced layers. Boron nitride layers of different thickness were grown on sapphire substrates (Al2O3) using the MOCVD method. The obtained films were characterized by FT-IR spectroscopy using IRR and ATR techniques and by the XRR and SEM methods. We showed that by analyzing the ATR or reflectance spectrum in the range of 600-2500 cm-1 we can measure the thickness of a BN layer on the Al2O3 substrate. Our measuring method allows measuring the layers with a thickness from ~2 nm to approx. 20 nm.Heksagonalny azotek boru (h-BN) jest atrakcyjnym materiałem do zastosowań w elektronice. Technologia wytwarzania urządzeń z zastosowaniem warstw h-BN wymaga nieniszczących i szybkich metod kontroli parametrów produkowanych warstw. Warstwy azotku boru o różnej grubości wyhodowano na podłożach szafirowych metodą MOCVD. Otrzymane warstwy scharakteryzowano za pomocą spektroskopii FT-IR z użyciem technik IRR i ATR oraz metodami XRR i SEM. Pokazaliśmy, że analizując widmo ATR lub odbicia w zakresie 600-2500 cm-1 można zmierzyć grubość warstwy BN na podłożu Al2O3. Nasza metoda pomiarowa pozwala na pomiar warstw o grubości od ~2 nm do ok. 20 nm
Characterization of superlattices by means of synchrotron diffraction topography and high-resolution X-ray diffraction
New possibilities are presented for the characterization of AB mixed superlattice compounds by the complementary use of synchrotron diffraction topography and rocking curves. In particular, using a synchrotron white beam and the section diffraction pattern of a 5 µm slit taken at a 10 cm film-to-crystal distance, it was possible to reproduce a set of stripes corresponding to interference fringes. These are analogous to the interference maxima revealed in high-resolution rocking curves, but are created by the changes in orientation of the planes inclined to the surface which are induced by unrelaxed strain. The section diffraction topographic method enabled examination of the sample homogeneity along the narrow intersecting beam. This was important in the case of the present sample containing a twin lamella in the InP substrate wafer. Both the section and projection Bragg case topographic methods enabled the crystallographic identification of the twin lamella. Another characteristic feature indicated in the section topography was the bending of the stripes corresponding to the superlattice peaks close to the boundaries of the twin lamella. The most probable interpretation of this phenomenon is an increase in the thickness of the deposited layers close to the lamella, together with possible changes in the chemical composition, leading to a decrease in the mean lattice parameter in the superlattice
Characterization of A
New possibilities are presented for the characterization of AB mixed superlattice compounds by the complementary use of synchrotron diffraction topography and rocking curves. In particular, using a synchrotron white beam and the section diffraction pattern of a 5 µm slit taken at a 10 cm film-to-crystal distance, it was possible to reproduce a set of stripes corresponding to interference fringes. These are analogous to the interference maxima revealed in high-resolution rocking curves, but are created by the changes in orientation of the planes inclined to the surface which are induced by unrelaxed strain. The section diffraction topographic method enabled examination of the sample homogeneity along the narrow intersecting beam. This was important in the case of the present sample containing a twin lamella in the InP substrate wafer. Both the section and projection Bragg case topographic methods enabled the crystallographic identification of the twin lamella. Another characteristic feature indicated in the section topography was the bending of the stripes corresponding to the superlattice peaks close to the boundaries of the twin lamella. The most probable interpretation of this phenomenon is an increase in the thickness of the deposited layers close to the lamella, together with possible changes in the chemical composition, leading to a decrease in the mean lattice parameter in the superlattice