14 research outputs found
Influence of chitosan molecular weight and degree of deacetylation on membrane physicochemical and separation properties in ethanol dehydration by the vapour permeation process
Membranes were prepared using three chitosans with different molecular weights and degrees of deacetylation. The influence of chitosan features on membrane physicochemical properties, i.e. degree of swelling, contact angle and tensile strength, as well as membrane separation properties in ethanol dehydration by the vapour permeation process are discussed. The conducted experiments showed that an increase in the chitosan molecular weight led to an increase in the membrane surface contact angle concomitant with a decrease in the material selectivity coefficient. On the other hand, an increase in the chitosan degree of deacetylation caused a reduction in ethanol and improved the water permeate flux. There was greater selectivity in the test process for membranes prepared from chitosan with the lowest molecular weight
Volatile organic compounds in varnish products – advantages and limitations of test methods
W niniejszej pracy przedstawiono stosowane obecnie metody oznaczania lotnych związków organicznych w wyrobach lakierowych: instrumentalną metodę chromatograficzną oraz wagową metodę różnicową. Oprócz charakterystyki poszczególnych technik uwagę poświęcono również na wskazanie wad i zalet każdej z nich. Podkreślono rolę komunikacji producentów z laboratoriami na etapie doboru metody analitycznej pod kątem badanego wyrobu.This paper presents the currently used methods for the determination of volatile organic compounds in varnish products: the instrumental chromatographic method and the differential gravimetric method. In addition to characterisation the different techniques, attention was also given to identifying the advantages and disadvantages of each. The role of communication between manufacturers and laboratories at the stage of selecting the analytical method for the tested product was emphasized
The investigations on process type influence on methyl violet adsorption on chitin and chitin deacetylation products
The aim of this work was to a study various adsorption processes of methyl violet (model compound of aniline dye) on chitin and chitin deacetylation products. Two types of adsorption processes - batch and continuous - were tested. Results illustrated that raw chitin is an effective adsorbent for methyl violet and the adsorption activity of chitin deacetylation products strongly decrease with increasing degree of deacetylation (DDA). The continuous process is more effective then batch process
Chitosan Hydrogel Beads Supported with Ceria for Boron Removal
In this study, a chitosan hydrogel supported with ceria (labelled Ce-CTS) was prepared by an encapsulation technique and used for the efficient removal of excess B(III) from aqueous solutions. The functionalisation of chitosan with Ce(IV) and the improvement in the adsorptive behaviour of the hydrogel were determined by SEM-EDS, FTIR, XRD, and inductively coupled plasma optical emission spectrometer (ICP-OES) analyses and discussed. The results demonstrate that Ce-CTS removes boric acid from aqueous solutions more efficiently than either cerium dioxide hydrate or raw chitosan beads, the precursors of the Ce-CTS biosorbent. The maximum adsorption capacity of 13.5 ± 0.9 mg/g was achieved at pH 7 after 24 h. The equilibrium data of boron adsorption on Ce-CTS fitted the Freundlich isotherm model, while the kinetic data followed the Elovich pseudo-second-order model, which indicated that the process was non-homogeneous. The dominant mechanism of removal was the reaction between boric acid molecules and hydroxyl groups bound to the ceria chelated by chitosan active centres. Due to its high efficiency in removing boron, good regeneration capacity and convenient form, Ce-CTS may be considered a promising biosorbent in water purification
Muscle torque production and kinematic properties in post-stroke patients: a pilot cross-sectional study
Stroke-related hemiplegia is an important factor influencing parameters of gait. So far, limited papers have assessed temporo-spatial capabilities and their correlations with gait parameters in the early post-stroke stage. This pilot study evaluated the temporospatial parameters of gait and assessed the maximal isometric and isokinetic torque production of the plantar flexor and dorsiflexor muscles. Methods: 15 patients with lower limb spasticity and 15 healthy controls were included. Stroke severity was assessed using the Modified Ashworth Scale and the Barthel Index. Gait cadence, gait speed, and gait cycle were assessed using inertial sensors during a Timed Up and Go test. Maximal isometric and isokinetic torque production of the ankle plantar flexor and dorsiflexor muscles were assessed using an isokinetic dynamometer device. Results: Post-stroke patients had statistically significantly lower gait cadence than healthy participants (17%, p < 0.05). Statistically significantly lower values of vertical acceleration were also noted during a sit-to-stand movement task (42%, p < 0.05). Plantar flexion torque of the affected limb was significantly different during isometric (63%, p ≤ 0.01) and isokinetic work for 30o /s (49%, p = 0.04), 60o /s (58%, p = 0.01) and 20 °/s (53%, p = 0.01). Dorsiflexor muscles’ torque production was significantly different in isometric activity (38%, p = 0.04). A statistically significant positive correlation occurred between the absolute peak torque of the dorsiflexor muscles in both static and speed phases of gait (Rs = 0.65, p = 0.04). Conclusions: Despite the low intensity of spasticity and early phase after stroke, differences in the muscle torque production and temporo-spatial parameters, as well as the correlations between them, were noticeable
Assessment of Changes in Concentration of Total Antioxidant Status, Acute-Phase Protein, and Prolactin in Patients with Osteoarthritis Subjected to a Complex Spa Treatment with Radon Water: Preliminary Results
Spa treatment brings many clinical benefits such as improved physical activity, pain relief, and improved quality of life. In the literature, there are only few objective studies evaluating changes in metabolism possibly influencing clinical outcomes. The main purpose of our study was the assessment of the effect of spa treatment on changes in concentration of TAS, CRP, and PRL in patients with osteoarthritis. Patients receiving spa treatment were enrolled. TAS, CRP, and PRL levels were obtained using standard tests before the beginning of treatment as well as on days 5 and 18. The study group consisted of n=35 patients with peripheral joint and spinal osteoarthritis. The control group consisted of 15 people selected from the resort staff, who also suffered from osteoarthritis and had no contact with radon. An increase in TAS concentration was found in the study group following therapy while the control group was characterized by a significant decrease in TAS. On day 5, an increase in TAS concentration was found in both groups, however, with much worse result in the control group. No changes in CRP concentration were statistically significant. PRL concentration was proven to decrease in a statistically significant way after treatment in the study group. This trial is registered with NCT03274128
Vapour permeation study of water and ethanol through crosslinked chitosan and alginate membranes
A vapour permeation of water and ethanol through homogenous chitosan and alginate membranes was investigated. The influence of the polymer matrix and crosslinking agents, and measurement protocol on the transport properties were discussed. The conducted experiments showed the greater separation factor, better stability and resistant to solvents for chemically crosslinked membranes. On the other hand, stronger association of the matrix, than the physical, caused decrease of vapour fluxes
Pervaporative investigation of ethyl alcohol dehydration
Pervaporative separation properties of crosslinked chitosan and alginate membrane on ethanol-water mixture at room temperature was studied. The influence of crosslinking agents on the separation properties were discussed. Selected crosslinking agents were affected differently on used polymer matrices. The better separation properties were obtained for membranes crosslinked by phosphoric (V) acid. The highest pervaporation separation index (309.6 kg/m2·h) and separation factor (52.6) were obtained for phosphoric (V) acid crosslinked alginate membranes, however, the greatest total flux (12.4 kg/m2·h) obtained for phosphoric acid crosslinked chitosan membrane
The Use of Lanthanum Ions and Chitosan for Boron Elimination from Aqueous Solutions
Boron is an essential element for plants and living organisms; however, it can be harmful if its concentration in the environment is too high. In this paper, lanthanum(III) ions were introduced to the structure of chitosan via an encapsulation technique and the obtained hydrogel (La-CTS) was used for the elimination of the excess of B(III) from modelling solutions. The reaction between boric acid and hydroxyl groups bound to the lanthanum coordinated by chitosan active centres was the preponderant mechanism of the bio-adsorption removal process. The results demonstrated that La-CTS removed boric acid from the aqueous solution more efficiently than either lanthanum hydroxide or native chitosan hydrogel, respectively. When the initial boron concentration was 100 mg/dm3, the maximum adsorption capacity of 11.1 ± 0.3 mg/g was achieved at pH 5 and the adsorption time of 24 h. The successful introduction of La(III) ions to the chitosan backbone was confirmed by Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, X-ray Photoelectron Spectroscopy, and Inductively Coupled Plasma Optical Emission Spectroscopy. Due to its high-performance boron adsorption-desorption cycle and convenient form, La-CTS seems to be a promising bio-adsorbent for water treatment
The Assessment of the Integrated Antioxidant System of the Body in the Course of Radon Therapy: A Pilot Study
Introduction. The sources of Reactive Oxidative Species (ROS) in the organism are the respiratory processes occurring in cells catalyzed by different enzymes. Operation of ROS is balanced by antioxidants, the compounds; although present in low concentrations, they significantly inhibit the degree of oxidation of particular molecules. The Aim of the Study. The aim of this study was to assess the changes in the integrated antioxidant system under the influence of radon therapy in osteoarthritis patients. Material and Methods. Observation included 35 patients suffering from degenerative joints and disc disease (mean age 56.5 years) undergoing radon water therapy and control group that consisted of 15 osteoarthritis patients (mean age 54.2) without contact with radon water. Before therapy and after 18 days of treatment, serum total antioxidant status (TAS) was assessed with the use of standard colorimetric assay. Results. In the study group, we observed trends to increase TAS concentration, whereas, in the control group, TAS concentration was decreasing. Conclusions. (1) Radon waters treatment influenced the level of TAS of osteoarthritis patients treated with the radon water. (2) The change in TAS concentrations in the study group may be the result of low doses of ionizing radiation, but further studies on larger patient’s groups are demanded. This study is registered with number NCT03274128