250 research outputs found

    Speech processing with deep learning for voice-based respiratory diagnosis : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science at Massey University, Albany, New Zealand

    Get PDF
    Voice-based respiratory diagnosis research aims at automatically screening and diagnosing respiratory-related symptoms (e.g., smoking status, COVID-19 infection) from human-generated sounds (e.g., breath, cough, speech). It has the potential to be used as an objective, simple, reliable, and less time-consuming method than traditional biomedical diagnosis methods. In this thesis, we conduct one comprehensive literature review and propose three novel deep learning methods to enrich voice-based respiratory diagnosis research and improve its performance. Firstly, we conduct a comprehensive investigation of the effects of voice features on the detection of smoking status. Secondly, we propose a novel method that uses the combination of both high-level and low-level acoustic features along with deep neural networks for smoking status identification. Thirdly, we investigate various feature extraction/representation methods and propose a SincNet-based CNN method for feature representations to further improve the performance of smoking status identification. To the best of our knowledge, this is the first systemic study that applies speech processing with deep learning for voice-based smoking status identification. Moreover, we propose a novel transfer learning scheme and a task-driven feature representation method for diagnosing respiratory diseases (e.g., COVID-19) from human-generated sounds. We find those transfer learning methods using VGGish, wav2vec 2.0 and PASE+, and our proposed task-driven method Sinc-ResNet have achieved competitive performance compared with other work. The findings of this study provide a new perspective and insights for voice-based respiratory disease diagnosis. The experimental results demonstrate the effectiveness of our proposed methods and show that they have achieved better performances compared to other existing methods

    Learning Signed Distance Functions from Noisy 3D Point Clouds via Noise to Noise Mapping

    Full text link
    Learning signed distance functions (SDFs) from 3D point clouds is an important task in 3D computer vision. However, without ground truth signed distances, point normals or clean point clouds, current methods still struggle from learning SDFs from noisy point clouds. To overcome this challenge, we propose to learn SDFs via a noise to noise mapping, which does not require any clean point cloud or ground truth supervision for training. Our novelty lies in the noise to noise mapping which can infer a highly accurate SDF of a single object or scene from its multiple or even single noisy point cloud observations. Our novel learning manner is supported by modern Lidar systems which capture multiple noisy observations per second. We achieve this by a novel loss which enables statistical reasoning on point clouds and maintains geometric consistency although point clouds are irregular, unordered and have no point correspondence among noisy observations. Our evaluation under the widely used benchmarks demonstrates our superiority over the state-of-the-art methods in surface reconstruction, point cloud denoising and upsampling. Our code, data, and pre-trained models are available at https://github.com/mabaorui/Noise2NoiseMapping/Comment: To appear at ICML2023. Code and data are available at https://github.com/mabaorui/Noise2NoiseMapping

    A study of the effects of climate change and human activities on NPP of marsh wetland vegetation in the Yellow River source region between 2000 and 2020

    Get PDF
    Quantitative assessment of the impacts of climate change and human activities on marsh wetland is essential for the sustainable development of marsh wetland ecosystem. This study takes the marsh wetland in the Yellow River source region (YRSR) as the research object, using the method of residual analysis, the potential net primary productivity (NPPp) of marsh wetland vegetation in the YRSR between 2000 and 2020 was stimulated using the Zhou Guangsheng model, and the actual primary productivity (NPPa) of marsh wetland vegetation was download from MOD17A3HGF product, and the difference between them was employed to calculate the NPP affected by human activities, the relative contribution of climate change and human activities to the change of NPPa of marsh wetland vegetation was quantitatively evaluated. The results revealed that between 2000 and 2020, NPPa of marsh wetland vegetation increased in the YRSR by 95.76%, among which climate-dominated and human-dominated NPP change occupied by 66.29% and 29.47% of study areas, respectively. The Zoige Plateau in the southeast accounted for the majority of the 4.24% decline in the NPPa of the marsh wetland vegetation, almost all of which were affected by human activities. It is found that the warming and humidifying of climate, as well as human protective construction activities, are the important reasons for the increase of NPPa of marsh wetland vegetation in the YRSR. Although climate change remains an important cause of the increase in NPPa of marsh wetland vegetation, the contribution of human activities to the increase in NPPa of marsh wetland vegetation is increasing

    Application of the improved dynamical–Statistical–Analog ensemble forecast model for landfalling typhoon precipitation in Fujian province

    Get PDF
    The forecasting performance of the Dynamical–Statistical–Analog Ensemble Forecast (DSAEF) model for Landfalling Typhoon [or tropical cyclone (TC)] Precipitation (DSAEF_LTP), with new values of two parameters (i.e., similarity region and ensemble method) for landfalling TC precipitation over Fujian Province, is tested in four experiments. Forty-two TCs with precipitation over 100 mm in Fujian Province during 2004–2020 are chosen as experimental samples. Thirty of them are training samples and twelve are independent samples. First, simulation experiments for the training samples are used to determine the best scheme of the DSAEF_LTP model. Then, the forecasting performance of this best scheme is evaluated through forecast experiments. In the forecast experiments, the TSsum (the sum of threat scores for predicting TC accumulated rainfall of ≥250 mm and ≥100 mm) of experiments DSAEF_A, B, C, D is 0.0974, 0.2615, 0.2496, and 0.4153, respectively. The results show that the DSAEF_LTP model performs best when both adding new values of the similarity region and ensemble method (DSAEF_D). At the same time, the TSsum of the best performer of numerical weather prediction (NWP) models is only 0.2403. The improved DSAEF_LTP model shows advantages compared to the NWP models. It is an important method to improve the predictability of the DSAEF_LTP model by adopting different schemes in different regions

    Learning a More Continuous Zero Level Set in Unsigned Distance Fields through Level Set Projection

    Full text link
    Latest methods represent shapes with open surfaces using unsigned distance functions (UDFs). They train neural networks to learn UDFs and reconstruct surfaces with the gradients around the zero level set of the UDF. However, the differential networks struggle from learning the zero level set where the UDF is not differentiable, which leads to large errors on unsigned distances and gradients around the zero level set, resulting in highly fragmented and discontinuous surfaces. To resolve this problem, we propose to learn a more continuous zero level set in UDFs with level set projections. Our insight is to guide the learning of zero level set using the rest non-zero level sets via a projection procedure. Our idea is inspired from the observations that the non-zero level sets are much smoother and more continuous than the zero level set. We pull the non-zero level sets onto the zero level set with gradient constraints which align gradients over different level sets and correct unsigned distance errors on the zero level set, leading to a smoother and more continuous unsigned distance field. We conduct comprehensive experiments in surface reconstruction for point clouds, real scans or depth maps, and further explore the performance in unsupervised point cloud upsampling and unsupervised point normal estimation with the learned UDF, which demonstrate our non-trivial improvements over the state-of-the-art methods. Code is available at https://github.com/junshengzhou/LevelSetUDF .Comment: To appear at ICCV2023. Code is available at https://github.com/junshengzhou/LevelSetUD

    Learning Consistency-Aware Unsigned Distance Functions Progressively from Raw Point Clouds

    Full text link
    Surface reconstruction for point clouds is an important task in 3D computer vision. Most of the latest methods resolve this problem by learning signed distance functions (SDF) from point clouds, which are limited to reconstructing shapes or scenes with closed surfaces. Some other methods tried to represent shapes or scenes with open surfaces using unsigned distance functions (UDF) which are learned from large scale ground truth unsigned distances. However, the learned UDF is hard to provide smooth distance fields near the surface due to the noncontinuous character of point clouds. In this paper, we propose a novel method to learn consistency-aware unsigned distance functions directly from raw point clouds. We achieve this by learning to move 3D queries to reach the surface with a field consistency constraint, where we also enable to progressively estimate a more accurate surface. Specifically, we train a neural network to gradually infer the relationship between 3D queries and the approximated surface by searching for the moving target of queries in a dynamic way, which results in a consistent field around the surface. Meanwhile, we introduce a polygonization algorithm to extract surfaces directly from the gradient field of the learned UDF. The experimental results in surface reconstruction for synthetic and real scan data show significant improvements over the state-of-the-art under the widely used benchmarks.Comment: Accepted by NeurIPS 2022. Project page:https://junshengzhou.github.io/CAP-UDF. Code:https://github.com/junshengzhou/CAP-UD

    LiDAR-Camera Panoptic Segmentation via Geometry-Consistent and Semantic-Aware Alignment

    Full text link
    3D panoptic segmentation is a challenging perception task that requires both semantic segmentation and instance segmentation. In this task, we notice that images could provide rich texture, color, and discriminative information, which can complement LiDAR data for evident performance improvement, but their fusion remains a challenging problem. To this end, we propose LCPS, the first LiDAR-Camera Panoptic Segmentation network. In our approach, we conduct LiDAR-Camera fusion in three stages: 1) an Asynchronous Compensation Pixel Alignment (ACPA) module that calibrates the coordinate misalignment caused by asynchronous problems between sensors; 2) a Semantic-Aware Region Alignment (SARA) module that extends the one-to-one point-pixel mapping to one-to-many semantic relations; 3) a Point-to-Voxel feature Propagation (PVP) module that integrates both geometric and semantic fusion information for the entire point cloud. Our fusion strategy improves about 6.9% PQ performance over the LiDAR-only baseline on NuScenes dataset. Extensive quantitative and qualitative experiments further demonstrate the effectiveness of our novel framework. The code will be released at https://github.com/zhangzw12319/lcps.git.Comment: Accepted as ICCV 2023 pape

    The Research of Population Genetic Differentiation for Marine Fishes (Hyporthodus septemfasciatus) Based on Fluorescent AFLP Markers

    Get PDF
    Hyporthodus septemfasciatus is a commercially important proliferation fish which is distributed in the coastal waters of Japan, Korea, and China. We used the fluorescent AFLP technique to check the genetic differentiations between broodstock and offspring populations. A total of 422 polymorphic bands (70.10%) were detected from the 602 amplified bands. A total of 308 polymorphic loci were checked for broodstock I (Pbroodstock I = 55.50%) coupled with 356 and 294 for broodstock II (Pbroodstock II = 63.12%) and offspring (Poffspring = 52.88%), respectively. The levels of population genetic diversities for broodstock were higher than those for offspring. Both AMOVA and Fst analyses showed that significant genetic differentiation existed among populations, and limited fishery recruitment to the offspring was detected. STRUCTURE and PCoA analyses indicated that two management units existed and most offspring individuals (95.0%) only originated from 44.0% of the individuals of broodstock I, which may have negative effects on sustainable fry production
    • …
    corecore