229 research outputs found
Clinical significance of obstructive sleep apnea in patients with acute coronary syndrome in relation to diabetes status.
Objective: The prognostic significance of obstructive sleep apnea (OSA) in patients with acute coronary syndrome (ACS) according to diabetes mellitus (DM) status remains unclear. We aimed to elucidate the association of OSA with subsequent cardiovascular events in patients with ACS with or without DM.
Research design and methods: In this prospective cohort study, consecutive eligible patients with ACS underwent cardiorespiratory polygraphy between June 2015 and May 2017. OSA was defined as an Apnea Hypopnea Index ≥15 events/hour. The primary end point was major adverse cardiovascular and cerebrovascular events (MACCEs), including cardiovascular death, myocardial infarction, stroke, ischemia-driven revascularization, or hospitalization for unstable angina or heart failure.
Results: Among 804 patients, 248 (30.8%) had DM and 403 (50.1%) had OSA. OSA was associated with 2.5 times the risk of 1 year MACCE in patients with DM (22.3% vs 7.1% in the non-OSA group; adjusted HR (HR)=2.49, 95% CI 1.16 to 5.35, p=0.019), but not in patients without DM (8.5% vs 7.7% in the non-OSA group, adjusted HR=0.94, 95% CI 0.51 to 1.75, p=0.85). Patients with DM without OSA had a similar 1 year MACCE rate as patients without DM. The increased risk of events was predominately isolated to patients with OSA with baseline glucose or hemoglobin A1c levels above the median. Combined OSA and longer hypoxia duration (time with arterial oxygen saturation22 min) further increased the MACCE rate to 31.0% in patients with DM.
Conclusions: OSA was associated with increased risk of 1 year MACCE following ACS in patients with DM, but not in non-DM patients. Further trials exploring the efficacy of OSA treatment in high-risk patients with ACS and DM are warranted
Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening
Ethylene production, as well as the expression of ethylene biosynthetic (Rh-ACS1–4 and Rh-ACO1) and receptor (Rh-ETR1–5) genes, was determined in five different floral tissues (sepals, petals, stamens, gynoecia, and receptacles) of cut rose (Rosa hybrida cv. Samantha upon treatment with ethylene or the ethylene inhibitor 1-methylcyclopropene (1-MCP). Ethylene-enhanced ethylene production occurred only in gynoecia, petals, and receptacles, with gynoecia showing the greatest enhancement in the early stage of ethylene treatment. However, 1-MCP did not suppress ethylene production in these three tissues. In sepals, ethylene production was highly decreased by ethylene treatment, and increased dramatically by 1-MCP. Ethylene production in stamens remained unchanged after ethylene or 1-MCP treatment. Induction of certain ethylene biosynthetic genes by ethylene in different floral tissues was positively correlated with the ethylene production, and this induction was also not suppressed by 1-MCP. The expression of Rh-ACS2 and Rh-ACS3 was quickly induced by ethylene in gynoecia, but neither Rh-ACS1 nor Rh-ACS4 was induced by ethylene in any of the five tissues. In addition, Rh-ACO1 was induced by ethylene in all floral tissues except sepals. The induced expression of ethylene receptor genes by ethylene was much faster in gynoecia than in petals, and the expression of Rh-ETR3 was strongly suppressed by 1-MCP in all floral tissues. These results indicate that ethylene biosynthesis in gynoecia is regulated developmentally, rather than autocatalytically. The response of rose flowers to ethylene occurs initially in gynoecia, and ethylene may regulate flower opening mainly through the Rh-ETR3 gene in gynoecia
Adiponectin at Physiologically Relevant Concentrations Enhances the Vasorelaxative Effect of Acetylcholine via Cav-1/AdipoR-1 Signaling.
Clinical studies have identified hypoadiponectinemia as an independent hypertension risk factor. It is known that adiponectin (APN) can directly cause vasodilation, but the doses required exceed physiologic levels several fold. In the current study, we determine the effect of physiologically relevant APN concentrations upon vascular tone, and investigate the mechanism(s) responsible. Physiologic APN concentrations alone induced no significant vasorelaxation. Interestingly, pretreatment of wild type mouse aortae with physiologic APN levels significantly enhanced acetylcholine (ACh)-induced vasorelaxation (
Study on rheological, adsorption and hydration properties of cement slurries incorporated with EPEG-based polycarboxylate superplasticizers
A series of polycarboxylate superplasticizers (PCEs) with different side-chain densities, main chain polymerization degrees, and side-chain lengths were designed and synthesized using a novel highly active ethylene glycol mono vinyl ether polyethylene glycol as the ether monomer. The influence of polycarboxylate ether on the rheological properties, interface adsorption, and hydration characteristics in cement paste was investigated through characterization of charge density, rheological properties, adsorption behavior, and hydration heat. The results indicate that the adsorption process of PCE on cement particles is spontaneous physical adsorption, and the hydration kinetics fitting reveals that the geometric crystal growth exponent n is in the range of 1–2, with needle-like and lamellar hydration products formed. With a decrease in side-chain density, the broadening of molecular weight distribution and the increase of charge density accelerate the flow of slurry, reduces saturation adsorption, and delays cement hydration. A decrease in main chain polymerization degree results in a downward trend in molecular weight and charge density, leading to larger molecular conformations, reduced slurry flow, decreased saturation adsorption, and delayed cement hydration. As the side-chain length of PCE (molecular weight) increases, the charge density decreases, and the molecular conformation exhibits a compact structure with reduced slurry flow, decreased saturation adsorption, and delayed cement hydration. In cases of low side-chain density, short side chains, and low molecular weight, enhanced adsorption capacity and faster adsorption rates are observed, resulting in the lower viscosity and a delay in the cement hydration process
Atg16L1 as a Novel Biomarker and Autophagy Gene for Diabetic Retinopathy.
Objective: Accumulating evidence suggests the critical role of autophagy in the pathogenesis of diabetic retinopathy (DR). In the current study, we aim to identify autophagy genes involved in DR via microarray analyses.
Methods: Gene microarrays were performed to identify differentially expressed lncRNAs/mRNAs between normal and DR retinas. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of lncRNA-coexpressed mRNAs were used to determine the related pathological pathways and biological modules. Real-time polymerase chain reactions (PCR) were conducted to validate the microarray analyses.
Results: A total of 2474 significantly dysregulated lncRNAs and 959 differentially expressed mRNAs were identified in the retina of DR. Based upon Signalnet analysis, Bcl2, Gabarapl2, Atg4c, and Atg16L1 participated the process of cell death in DR. Moreover, real-time PCR revealed significant upregulation of Atg16L1.
Conclusion: This study indicated the importance and potential role of Atg16L1, one of the autophagy genes, as a biomarker in DR development and progression
Radiomics analysis of R2* maps to predict early recurrence of single hepatocellular carcinoma after hepatectomy
ObjectivesThis study aimed to evaluate the effectiveness of radiomics analysis with R2* maps in predicting early recurrence (ER) in single hepatocellular carcinoma (HCC) following partial hepatectomy.MethodsWe conducted a retrospective analysis involving 202 patients with surgically confirmed single HCC having undergone preoperative magnetic resonance imaging between 2018 and 2021 at two different institutions. 126 patients from Institution 1 were assigned to the training set, and 76 patients from Institution 2 were assigned to the validation set. A least absolute shrinkage and selection operator (LASSO) regularization was conducted to operate a logistic regression, then features were identified to construct a radiomic score (Rad-score). Uni- and multi-variable tests were used to assess the correlations of clinicopathological features and Rad-score with ER. We then established a combined model encompassing the optimal Rad-score and clinical-pathological risk factors. Additionally, we formulated and validated a predictive nomogram for predicting ER in HCC. The nomogram’s discrimination, calibration, and clinical utility were thoroughly evaluated.ResultsMultivariable logistic regression revealed the Rad-score, microvascular invasion (MVI), and α fetoprotein (AFP) level > 400 ng/mL as significant independent predictors of ER in HCC. We constructed a nomogram based on these significant factors. The areas under the receiver operator characteristic curve of the nomogram and precision-recall curve were 0.901 and 0.753, respectively, with an F1 score of 0.831 in the training set. These values in the validation set were 0.827, 0.659, and 0.808.ConclusionThe nomogram that integrates the radiomic score, MVI, and AFP demonstrates high predictive efficacy for estimating the risk of ER in HCC. It facilitates personalized risk classification and therapeutic decision-making for HCC patients
Leprosy: treatment, prevention, immune response and gene function
Since the leprosy cases have fallen dramatically, the incidence of leprosy has remained stable over the past years, indicating that multidrug therapy seems unable to eradicate leprosy. More seriously, the emergence of rifampicin-resistant strains also affects the effectiveness of treatment. Immunoprophylaxis was mainly carried out through vaccination with the BCG but also included vaccines such as LepVax and MiP. Meanwhile, it is well known that the infection and pathogenesis largely depend on the host’s genetic background and immunity, with the onset of the disease being genetically regulated. The immune process heavily influences the clinical course of the disease. However, the impact of immune processes and genetic regulation of leprosy on pathogenesis and immunological levels is largely unknown. Therefore, we summarize the latest research progress in leprosy treatment, prevention, immunity and gene function. The comprehensive research in these areas will help elucidate the pathogenesis of leprosy and provide a basis for developing leprosy elimination strategies
Ground beetle assemblages in Beijing’s new mountain forests
Mature forests have been almost completely destroyed in China’s northern regions, but this has been followed by large-scale reforestation in the wake of environmental degradation. Although future forest plantations are expected to expand over millions of hectares, knowledge about the ecology and biodiversity of China’s replanted forests remains very limited. Addressing these knowledge gaps, we recorded ground beetle (Coleoptera: Carabidae) communities in five secondary forest types: plantations of Chinese Pine (Pinus tabulaeformis) and Prince Rupprecht’s Larch (Larix principis-rupprechtii), Oak (Quercus wutaishanica) and Asian White Birch (Betula platyphylla) woodlands, and naturally regenerated mixed forest. Species richness peaked in mixed forests, while pine and oak woodlands harboured discrete communities of intermediate species richness. Oak, pine and mixed forest habitats also showed high levels of species turnover between plots. Canopy closure was an important factor influencing ground beetle assemblages and diversity, and a number of forest specialist species only occurred in pine or oak forests. We believe that some forest specialists have survived earlier deforestation and appear to be supported by new plantation forests, but maintenance of secondary native oak and mixed forests is crucial to safeguard the overall species pool
DMSP-producing bacteria are more abundant in the surface microlayer than subsurface seawater of the East China Sea
Microbial production and catabolism of dimethylsulfoniopropionate (DMSP), generating the climatically active gases dimethyl sulfide (DMS) and methanethiol (MeSH), have key roles in global carbon and sulfur cycling, chemotaxis, and atmospheric chemistry. Microorganisms in the sea surface microlayer (SML), the interface between seawater and atmosphere, likely play an important role in the generation of DMS and MeSH and their exchange to the atmosphere, but little is known about these SML microorganisms. Here, we investigated the differences between bacterial community structure and the distribution and transcription profiles of the key bacterial DMSP synthesis (dsyB and mmtN) and catabolic (dmdA and dddP) genes in East China Sea SML and subsurface seawater (SSW) samples. Per equivalent volume, bacteria were far more abundant (~ 7.5-fold) in SML than SSW, as were those genera predicted to produce DMSP. Indeed, dsyB (~ 7-fold) and mmtN (~ 4-fold), robust reporters for bacterial DMSP production, were also far more abundant in SML than SSW. In addition, the SML had higher dsyB transcripts (~ 3-fold) than SSW samples, which may contribute to the significantly higher DMSP level observed in SML compared with SSW. Furthermore, the abundance of bacteria with dmdA and their transcription were higher in SML than SSW samples. Bacteria with dddP and transcripts were also prominent, but less than dmdA and presented at similar levels in both layers. These data indicate that the SML might be an important hotspot for bacterial DMSP production as well as generating the climatically active gases DMS and MeSH, a portion of which are likely transferred to the atmosphere
- …