78 research outputs found

    On space-time quasiconcave solutions of the heat equation

    Full text link
    In this paper we first obtain a constant rank theorem for the second fundamental form of the space-time level sets of a space-time quasiconcave solution of the heat equation. Utilizing this constant rank theorem, we can obtain some strictly convexity results of the spatial and space-time level sets of the space-time quasiconcave solution of the heat equation in a convex ring. To explain our ideas and for completeness, we also review the constant rank theorem technique for the space-time Hessian of space-time convex solution of heat equation and for the second fundamental form of the convex level sets for harmonic function

    Iterative solution to singular nth-order nonlocal boundary value problems

    Get PDF
    By using the cone theory and the Banach contraction mapping principle, we study the existence and uniqueness of an iterative solution to the singular nth-order nonlocal boundary value problems

    Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution

    Get PDF
    Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work

    Clinical presentation, histology, and prognoses of malignant melanoma in ethnic Chinese: A study of 522 consecutive cases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malignant melanoma is a rare disease in Asia, and knowledge on its characteristics and clinical outcome in Asian patients is limited. The purpose of this observational study was to determine the clinical presentation and outcome of patients with melanoma in China.</p> <p>Methods</p> <p>A database was prospectively established for the purpose of this analysis. The elements of the database included basic demographic data of patients and prognosticators previously reported in literature, as well as follow-up data including clinical outcome after treatment. Medical record of all patients with pathologically diagnosed malignant melanoma consulted in our center since 2006 were retrieved and reviewed. No patient was excluded in this study. Statistical analyses including survival and multivariate analyses of factors associated with survival were respectively performed by Kaplan-Meier method and Cox proportional hazard model.</p> <p>Results</p> <p>A total of 522 consecutive and nonselected cases were evaluated. There were 218 cases (41.8%) of acral lentiginous melanoma (ALM), 118 (22.6%) of mucosal melanoma (MCM), 103 (19.7%) of nodular melanoma (NM), 33 (6.3%) of superficial spreading melanoma (SSM), and others were Lentigo maligna melanoma or unclassifiable disease. The proportion of patients with clinical stage I, II, III, and IV diseases were 6.1%, 55.9%, 25.1%, and 12.8%, respectively. Among the 357 cases of cutaneous melanoma, 234 patients (65.5%) had ulceration.</p> <p>The 5-year overall survival rate of all 522 patients was 41.6%, and the median survival time was 3.92 years (95% CI, 3.282 to 4.558). Five-year survival rates of patients with stage I, II, III, and IV diseases were 94.1%, 44.0%, 38.4% and 4.6% respectively (P < 0.001). Multivariate analysis revealed that clinical stage and the ulceration were two significant prognosticators for OS. In addition, extent of surgery and use of adjuvant therapy were significant prognosticators for DFS in patients with non-metastatic disease after definitive treatment. Pathological subtype was not a significant prognostic factor to predict wither OS or DFS.</p> <p>Conclusions</p> <p>Prognoses of patients with malignant melanoma diagnosed in China were suboptimal, and most patients were diagnosed with locally advanced disease (i.e., stage II or above). ALM and MCM are the two most commonly diagnosed pathological subtypes. Clinical staging and presence of ulceration was significantly associated with clinical outcome in terms of OS, while treatment strategy including extent of surgery and use of adjuvant therapy were significant predictors of DFS.</p

    Network Modeling Identifies Molecular Functions Targeted by miR-204 to Suppress Head and Neck Tumor Metastasis

    Get PDF
    Due to the large number of putative microRNA gene targets predicted by sequence-alignment databases and the relative low accuracy of such predictions which are conducted independently of biological context by design, systematic experimental identification and validation of every functional microRNA target is currently challenging. Consequently, biological studies have yet to identify, on a genome scale, key regulatory networks perturbed by altered microRNA functions in the context of cancer. In this report, we demonstrate for the first time how phenotypic knowledge of inheritable cancer traits and of risk factor loci can be utilized jointly with gene expression analysis to efficiently prioritize deregulated microRNAs for biological characterization. Using this approach we characterize miR-204 as a tumor suppressor microRNA and uncover previously unknown connections between microRNA regulation, network topology, and expression dynamics. Specifically, we validate 18 gene targets of miR-204 that show elevated mRNA expression and are enriched in biological processes associated with tumor progression in squamous cell carcinoma of the head and neck (HNSCC). We further demonstrate the enrichment of bottleneckness, a key molecular network topology, among miR-204 gene targets. Restoration of miR-204 function in HNSCC cell lines inhibits the expression of its functionally related gene targets, leads to the reduced adhesion, migration and invasion in vitro and attenuates experimental lung metastasis in vivo. As importantly, our investigation also provides experimental evidence linking the function of microRNAs that are located in the cancer-associated genomic regions (CAGRs) to the observed predisposition to human cancers. Specifically, we show miR-204 may serve as a tumor suppressor gene at the 9q21.1–22.3 CAGR locus, a well established risk factor locus in head and neck cancers for which tumor suppressor genes have not been identified. This new strategy that integrates expression profiling, genetics and novel computational biology approaches provides for improved efficiency in characterization and modeling of microRNA functions in cancer as compared to the state of art and is applicable to the investigation of microRNA functions in other biological processes and diseases
    corecore