841 research outputs found

    The Adsorption of CHS-1 Resin for Cr (VI) of Low Concentration from Electroplating Wastewater

    Get PDF
    AbstractThe adsorption property of CHS-1 resin for Cr (VI) was investigated by chemical analysis. Experiment results show that CHS-1 resin has the best adsorption ability for Cr (VI) at pH=2-3. The exchange adsorption rate of the resin for Cr (VI) at low concentration is controlled by liquid film diffusion and chemical reaction. The behavior obeys the Freundlich isotherm and Langmuir equation. Its saturated sorption capacity is 347.22mg/g at 298K. The thermodynamic adsorption parameters, enthalpy change ΔH and free energy change ΔG298 of the adsorption are 1.39kJ/mol and -5.3kJ/mol. Cr (VI) adsorbed on CHS-1 resin can be eluted by 5% NaOH -5% NaCl quantitatively without apparent decrease in sorption capacity

    Psychometric property study of the Affective Lability Scale-short form in Chinese patients with mood disorders

    Get PDF
    IntroductionThis study aimed to investigate the psychometric properties of the Affective Lability Scale-short form (ALS-SF) among Chinese patients with mood disorders, and to compare ALS-SF subscale scores between patients with major depressive disorder (MDD) and patients with bipolar disorder (BD) depression.MethodsA total of 344 patients with mood disorders were included in our study. Participants were measured through a set of questionnaires including the Chinese version of ALS-SF, Patient Health Questionnaire-9 (PHQ-9), Generalized Anxiety Disorder 7-item (GAD-7), and NEO-Five Factor Inventory (NEO-FFI). Exploratory factor analysis and confirmatory factor analysis were applied to examine the psychometric properties of ALS-SF. Besides, correlation and regression analyses were performed to explore the relationship between affective lability and depression, anxiety, and neuroticism. Independent samples t-tests were used to compare the subscale scores of ALS-SF between the MDD and BD depression groups.ResultsResults of factor analysis indicated that the model of ALS-SF was consistent with ALS-SF. The ALS-SF showed a solid validity and high internal consistency (Cronbach’s alpha = 0.861). In addition, each subscale of ALS-SF was significantly correlated with PHQ-9, GAD-7, and NEO-FFI neuroticism subscale, except for the anger subscale showed no significant correlation with PHQ-9. Besides, the depression/elation and anger factor scores in patients with BD depression were higher than in patients with MDD.ConclusionOur study suggests that the Chinese version of ALS-SF has good reliability and validity for measuring affective lability in Chinese patients with mood disorders. Assessing affective lability would assist clinicians to distinguish between MDD and BP depression and may decrease the risks of misdiagnosis

    Paleocene (c. 62 Ma) leucogranites in southern Lhasa, Tibet: products of syn-collisional crustal anatexis during slab roll-back?

    Get PDF
    Voluminous peraluminous leucogranites are common in large-scale orogenic belts and are crucial in gaining a fuller understanding of the related geodynamic process. However, the origin of such syn-collisional leucogranites remains highly controversial. In this contribution, we report petrological and geochemical data for Paleocene (c. 63 Ma) garnet-bearing, two-mica granites and associated biotite granites from the Gangdese batholith in southern Tibet. The Zhengga biotite granites have high SiO2 (70–73 wt %) and low MgO (0·4–0·7 wt %) contents with initial 87Sr/86Sr ratios of 0·7049–0·7050, εNd(t) values of +0·5 to +1·2 and zircon δ18O values of 5·6–6·9‰, similar to most early Paleocene granitoids in southern Lhasa. These geochemical characteristics suggest that the Zhengga biotite granites were derived from a crustal source that mixed with variable amounts of Gangdese juvenile lower crust and minor ancient crust-derived melts. The Zhengga peraluminous, garnet-bearing, two-mica granites have similar Sr–Nd–O isotope compositions to the biotite granites (0·7037–0·7050, +0·4 to +0·8, 5·5–7·3‰, respectively) as well as higher SiO2 (73–76 wt %) and lower TiO2 (<0·06 wt %), MgO (<0·3 wt %), Fe2 OT3 (<2 wt %) and CaO (<0·7 wt %) contents. These most probably represent highly evolved biotite granite magmas that differentiated in the mid-crust. The first contact of India with Asia appears to have occurred in central Lhasa during the early Paleocene (65–63 Ma) and led to crustal thickening and cessation of magmatism. Early Paleocene slab roll-back would have significantly enhanced asthenospheric corner flow and supplied a long-lived heat source for coeval crustal anatexis and metamorphism in southern Lhasa during the early phase of continental collision. Similar interaction between continental collision and oceanic subduction may also occur in other large-scale convergence zones in which the lithosphere and crust are anomalously hot

    Revisit to the yield ratio of triton and 3^3He as an indicator of neutron-rich neck emission

    Full text link
    The neutron rich neck zone created in heavy ion reaction is experimentally probed by the production of the A=3A=3 isobars. The energy spectra and angular distributions of triton and 3^3He are measured with the CSHINE detector in 86^{86}Kr +208^{208}Pb reactions at 25 MeV/u. While the energy spectrum of 3^{3}He is harder than that of triton, known as "3^{3}He-puzzle", the yield ratio R(t/3He)R({\rm t/^3He}) presents a robust rising trend with the polar angle in laboratory. Using the fission fragments to reconstruct the fission plane, the enhancement of out-plane R(t/3He)R({\rm t/^3He}) is confirmed in comparison to the in-plane ratios. Transport model simulations reproduce qualitatively the experimental trends, but the quantitative agreement is not achieved. The results demonstrate that a neutron rich neck zone is formed in the reactions. Further studies are called for to understand the clustering and the isospin dynamics related to neck formation

    A SWAP Gate for Spin Qubits in Silicon

    Full text link
    With one- and two-qubit gate fidelities approaching the fault-tolerance threshold for spin qubits in silicon, how to scale up the architecture and make large arrays of spin qubits become the more pressing challenges. In a scaled-up structure, qubit-to-qubit connectivity has crucial impact on gate counts of quantum error correction and general quantum algorithms. In our toolbox of quantum gates for spin qubits, SWAP gate is quite versatile: it can help solve the connectivity problem by realizing both short- and long-range spin state transfer, and act as a basic two-qubit gate, which can reduce quantum circuit depth when combined with other two-qubit gates. However, for spin qubits in silicon quantum dots, high fidelity SWAP gates have not been demonstrated due to the requirements of large circuit bandwidth and a highly adjustable ratio between the strength of the exchange coupling J and the Zeeman energy difference Delta E_z. Here we demonstrate a fast SWAP gate with a duration of ~25 ns based on quantum dots in isotopically enriched silicon, with a highly adjustable ratio between J and Delta E_z, for over two orders of magnitude in our device. We are also able to calibrate the single-qubit local phases during the SWAP gate by incorporating single-qubit gates in our circuit. By independently reading out the qubits, we probe the anti-correlations between the two spins, estimate the operation fidelity and analyze the dominant error sources for our SWAP gate. These results pave the way for high fidelity SWAP gates, and processes based on them, such as quantum communication on chip and quantum simulation by engineering the Heisenberg Hamiltonian in silicon.Comment: 25 pages, 5 figures
    • …
    corecore