189 research outputs found

    Enhanced critical current density of MgB2 superconductor synthesized in high magnetic fields

    Full text link
    The effect of high magnetic fields on the current carrying properties of both MgB2 bulks and Fe-sheathed tapes was investigated following different thermal sequences. It is found that application of a large magnetic field during processing results in the quite uniform microstructure and the better connectivity between the MgB2 grains. As a result, the Jc of these samples has shown much higher value than that of the MgB2 samples in the absence of magnetic field. The possible mechanism of the Jc enhancement under an external magnetic field is also discussed.Comment: Presented at ISS2005, Tsukuba, 24-26 Oct., 2005; Revised versio

    Significantly enhanced critical current densities in MgB2 tapes made by a scaleable, nano-carbon addition route

    Get PDF
    Nanocarbon-doped Fe-sheathed MgB2 tapes with different doping levels were prepared by the in situ powder-in-tube method. Compared to the undoped tapes, Jc for all the C-doped samples was enhanced by more than an order of magnitude in magnetic fields above 9 T. At 4.2 K, the transport Jc for the 5 at% doped tapes reached 1.85x104 A/cm2 at 10 T and 2.8x103 A/cm2 at 14 T, respectively. Moreover, the critical temperature for the doped tapes decreased slightly. Transmission electron microscopy showed a number of intra-granular dislocations and the dispersed nanoparticles embedded within MgB2 grains induced by the C doping. The mechanism for the enhancement of flux pinning is also discussed. These results indicate that powder-in-tube-processed MgB2 tape is very promising for high-field applications.Comment: 13 pages, 5 figures. to be published soo

    Development of Powder-in-Tube Processed Iron Pnictide Wires and Tapes

    Full text link
    The development of the PIT fabrication process of iron pnictide superconducting wires and tapes has been carried out in order to enhance their transport properties. Silver was found to be the best sheath material, since no reaction layer was observed between the silver sheath and the superconducting core. The grain connectivity of iron pnictide wires and tapes has been markedly improved by employing Ag or Pb as dopants. At present, critical current densities in excess of 3750 A/cm^2 (Ic = 37.5 A) at 4.2 K have been achieved on Ag-sheathed SrKFeAs wires prepared with the above techniques, which is the highest in iron-based wires and tapes so far. Moreover, Ag-sheathed Sm-1111 superconducting tapes were successfully prepared by PIT method at temperatures as low as 900C, instead of commonly used temperatures of 1200C. These results demonstrate the feasibility of producing superconducting pnictide composite wires, even grain boundary properties require much more attention.Comment: 4 pages, 6 figures. Submitted to ASC2010 proceeding

    Improved critical current densities in MgB2 tapes with ZrB2 doping

    Get PDF
    MgB2/Fe tapes with 2.5-15 at.% ZrB2 additions were prepared through the in situ powder-in-tube method. Compared to the pure tape, a significant improvement in the in-field critical current density Jc was observed, most notably for 10 at.% doping, while the critical temperature decreased slightly. At 4.2 K, the transport Jc for the 10 at.% doped sample increased by more than an order of magnitude than the undoped one in magnetic fields above 9 T. Nanoscale segregates or defects caused by the ZrB2 additions which act as effective flux pinning centers are proposed to be the main reason for the improved Jc field performance.Comment: 14 pages, 6 figure

    Strongly Enhanced Current-Carrying Performance in MgB2 Tape Conductors by Novel C60 Doping

    Full text link
    MgB2 is a promising superconductor for important large-scale applications for both high field magnets and cryocooler-cooled magnet operated at temperatures around 20 K. In this work, by utilizing C60 as a viable alternative dopant, we demonstrate a simple and industrially scaleable rout that yields a 10-15-fold improvement in the in-high-field current densities of MgB2 tape conductors. For example, a Jc value higher than 4x10^4 A/cm^2 (4.2 K, 10 T), which exceeds that for NbTi superconductor, can be realized on the C60 doped MgB2 tapes. It is worth noting that this value is even higher than that fabricated using strict high energy ball milling technique under Ar atmosphere. At 20 K, Hirr was about 10 T for C60 doped MgB2 tapes. A large amount of nanometer-sized precipitates and grain boundaries were found in MgB2 matrix. The special physical and chemical characteristic of C60, in addition to its C containing intrinsic essence, is a key point in enhancing the superconducting performance of MgB2 tapes.Comment: 18 pages, 5 figure
    corecore