14 research outputs found

    Correction to: Clinical benefit of glasdegib plus low-dose cytarabine in patients with de novo and secondary acute myeloid leukemia: long-term analysis of a phase II randomized trial

    Get PDF
    This analysis from the phase II BRIGHT AML 1003 trial reports the long-term efficacy and safety of glasdegib + low-dose cytarabine (LDAC) in patients with acute myeloid leukemia ineligible for intensive chemotherapy. The multicenter, open-label study randomized (2:1) patients to receive glasdegib + LDAC (de novo, n = 38; secondary acute myeloid leukemia, n = 40) or LDAC alone (de novo, n = 18; secondary acute myeloid leukemia, n = 20). At the time of analysis, 90% of patients had died, with the longest follow-up since randomization 36 months. The combination of glasdegib and LDAC conferred superior overall survival (OS) versus LDAC alone; hazard ratio (HR) 0.495; (95% confidence interval [CI] 0.325–0.752); p = 0.0004; median OS was 8.3 versus 4.3 months. Improvement in OS was consistent across cytogenetic risk groups. In a post-hoc subgroup analysis, a survival trend with glasdegib + LDAC was observed in patients with de novo acute myeloid leukemia (HR 0.720; 95% CI 0.395–1.312; p = 0.14; median OS 6.6 vs 4.3 months) and secondary acute myeloid leukemia (HR 0.287; 95% CI 0.151–0.548; p < 0.0001; median OS 9.1 vs 4.1 months). The incidence of adverse events in the glasdegib + LDAC arm decreased after 90 days’ therapy: 83.7% versus 98.7% during the first 90 days. Glasdegib + LDAC versus LDAC alone continued to demonstrate superior OS in patients with acute myeloid leukemia; the clinical benefit with glasdegib + LDAC was particularly prominent in patients with secondary acute myeloid leukemia. ClinicalTrials.gov identifier: NCT01546038.Open Access funding enabled and organized by Projekt DEAL. This study was funded by Pfizer.Peer reviewe

    Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome

    Get PDF
    Glasdegib is a Hedgehog pathway inhibitor. This phase II, randomized, open-label, multicenter study (ClinicalTrials.gov, NCT01546038) evaluated the efficacy of glasdegib plus low-dose cytarabine (LDAC) in patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome unsuitable for intensive chemotherapy. Glasdegib 100 mg (oral, QD) was administered continuously in 28-day cycles; LDAC 20 mg (subcutaneous, BID) was administered for 10 per 28 days. Patients (stratified by cytogenetic risk) were randomized (2:1) to receive glasdegib/LDAC or LDAC. The primary endpoint was overall survival. Eighty-eight and 44 patients were randomized to glasdegib/LDAC and LDAC, respectively. Median (80% confidence interval [CI]) overall survival was 8.8 (6.9–9.9) months with glasdegib/LDAC and 4.9 (3.5–6.0) months with LDAC (hazard ratio, 0.51; 80% CI, 0.39–0.67, P = 0.0004). Fifteen (17.0%) and 1 (2.3%) patients in the glasdegib/LDAC and LDAC arms, respectively, achieved complete remission (P < 0.05). Nonhematologic grade 3/4 all-causality adverse events included pneumonia (16.7%) and fatigue (14.3%) with glasdegib/LDAC and pneumonia (14.6%) with LDAC. Clinical efficacy was evident across patients with diverse mutational profiles. Glasdegib plus LDAC has a favorable benefit–risk profile and may be a promising option for AML patients unsuitable for intensive chemotherapy

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore