22 research outputs found

    Research on Water Pollution Control Based on STM32 Intelligent Vehicle

    Get PDF
    In order to solve the high cost and low efficiency of different degrees of pollution control of natural water resources in China at this stage, photocatalytic water purification technology is adopted to reduce the cost of water pollution treatment and improve the treatment efficiency, and an intelligent vehicle equipped with photocatalytic materials is proposed, which is equipped with industrial cameras, communication positioning modules and sensors, and realizes dynamic planning of navigation routes by improving ant colony algorithms, computer vision recognition, ultrasonic obstacle avoidance, and realizes photocatalytic fixed-point purification. Predict advanced photoelectric catalytic performance based on density functional theory and machine learning, solve the problem of BiVO4 photo corrosion and instability, and achieve efficient water purification at low cost

    Structural and Mechanical Properties of Ionic Di-block Copolymers via a Molecular Dynamics Approach

    No full text
    Polymerized ionic copolymers have recently evolved as a new class of materials to overcome the limited range of mechanical properties of ionic homopolymers. In this paper, we investigate the structural and mechanical properties of charged ionic homopolymers and di-block copolymers, while using coarse-grained molecular dynamics simulation. Tensile and compressive deformation are applied to the homopolymers and copolymers in the glassy state. The effect of charge ratio and loading direction on the stress-strain behavior are studied. It is found that the electrostatic interactions among charged pairs play major roles, as evidenced by increased Young’s modulus and yield strength with charge ratio. Increased charge ratio lead to enhanced stress contribution from both bonding and pairwise (Van der Waals + coulombic) interaction. The increase in the gyration of the radius is observed with increasing charge ratio in homopolymers, yet a reversed tendency is observed in copolymers. Introduced charge pairs leads to an increased randomness in the segmental orientation in copolymers

    Weakly-supervised ROI extraction method based on contrastive learning for remote sensing images

    Full text link
    ROI extraction is an active but challenging task in remote sensing because of the complicated landform, the complex boundaries and the requirement of annotations. Weakly supervised learning (WSL) aims at learning a mapping from input image to pixel-wise prediction under image-wise labels, which can dramatically decrease the labor cost. However, due to the imprecision of labels, the accuracy and time consumption of WSL methods are relatively unsatisfactory. In this paper, we propose a two-step ROI extraction based on contractive learning. Firstly, we present to integrate multiscale Grad-CAM to obtain pseudo pixelwise annotations with well boundaries. Then, to reduce the compact of misjudgments in pseudo annotations, we construct a contrastive learning strategy to encourage the features inside ROI as close as possible and separate background features from foreground features. Comprehensive experiments demonstrate the superiority of our proposal. Code is available at https://github.com/HE-Lingfeng/ROI-Extractio

    Influence of Impregnation Medium on the Adsorptive Performance of Silica Sulfuric Acid for the Removal of Gaseous o-Xylene: Comparison on Ethyl Acetate and Water

    No full text
    Silica supported sulfuric acid (SSA) has been demonstrated to be capable of effectively removing phenyl VOCs through the reaction-type adsorption mechanism. The effects of the solvent (water, ethyl acetate) used to impregnate silica gel with H2SO4 solution in order to prepare SSA adsorbents have been studied. As-prepared two series SSA(E)-x and SSA(W)-x materials (x = 1, 2, 3, 4) were characterized by TG, SEM/EDS and N2 adsorption/desorption techniques, and their breakthrough adsorption performances were evaluated from experimental and theoretical aspects. The results showed that the H2SO4 loading amounts were 2.8, 4.0, 4.8 and 5.6 mmol g−1 respectively for both SSA(E)-x and SSA(W)-x when x equaled 1, 2, 3, 4. Among them, SSA(E)-4 was found to have a higher proportion of the C-state H2SO4 than SSA(W)-4. Both SSA(E)-x and SSA(W)-x exhibited significant removal capacity of gaseous o-xylene. The reactive temperature regions were determined to be 120–170 °C for SSA(E)-4 and 120–160 °C for SSA(W)-4 with a common optimum point of 160 °C. Both SSA(E)-x and SSA(W)-x adsorbents exhibited excellent recyclability and reuse performance. Further, the series SSA(E)-x materials outperformed the series SSA(W)-x on all adsorption performance metrics, suggesting that ethyl acetate is a preferred solvent for preparing the SSA materials in phenyl VOCs removal application

    Influence of Impregnation Medium on the Adsorptive Performance of Silica Sulfuric Acid for the Removal of Gaseous <i>o</i>-Xylene: Comparison on Ethyl Acetate and Water

    No full text
    Silica supported sulfuric acid (SSA) has been demonstrated to be capable of effectively removing phenyl VOCs through the reaction-type adsorption mechanism. The effects of the solvent (water, ethyl acetate) used to impregnate silica gel with H2SO4 solution in order to prepare SSA adsorbents have been studied. As-prepared two series SSA(E)-x and SSA(W)-x materials (x = 1, 2, 3, 4) were characterized by TG, SEM/EDS and N2 adsorption/desorption techniques, and their breakthrough adsorption performances were evaluated from experimental and theoretical aspects. The results showed that the H2SO4 loading amounts were 2.8, 4.0, 4.8 and 5.6 mmol g−1 respectively for both SSA(E)-x and SSA(W)-x when x equaled 1, 2, 3, 4. Among them, SSA(E)-4 was found to have a higher proportion of the C-state H2SO4 than SSA(W)-4. Both SSA(E)-x and SSA(W)-x exhibited significant removal capacity of gaseous o-xylene. The reactive temperature regions were determined to be 120–170 °C for SSA(E)-4 and 120–160 °C for SSA(W)-4 with a common optimum point of 160 °C. Both SSA(E)-x and SSA(W)-x adsorbents exhibited excellent recyclability and reuse performance. Further, the series SSA(E)-x materials outperformed the series SSA(W)-x on all adsorption performance metrics, suggesting that ethyl acetate is a preferred solvent for preparing the SSA materials in phenyl VOCs removal application

    Laser-driven powerful kHz hard x-ray source

    No full text
    A powerful hard x-ray source based on laser plasma interaction is developed.By introducing the kHz,800nm pulses onto a rotating molybdenum(Mo) disk target,intense Mo Kα x-rays are emitted withsuppressed bremsstrahlung background.Results obtained with different laser intensities suggest that thedominant absorption mechanism responsible for the high conversion efficiency is vacuumheating(VH).The high degree of spatial coherence is verified. With the high average flux and a source size comparableto the laser focus spot,absorption contrast imaging and phase contrast imaging ar ecarried out to test theimaging capability of the source.Not only useful for imaging application,this compact x-ray source isalso holding great potential for ultrafast x-ray diffraction(XRD) due to the intrinsic merits such asfemtosecond pulseduration and natural synchronization with the driving lase rpulses

    Dietary Supplementation of Calcium Propionate and Calcium Butyrate Improves Eggshell Quality of Laying Hens in the Late Phase of Production

    No full text
    The aim of this study was to evaluate the effects of dietary supplementation of calcium propionate and calcium butyrate on the laying performance, eggshell quality, and expression of genes related to calcium and phosphorus metabolism in the tibia. One hundred and twenty 70-week-old Isa Brown hens were randomly assigned to three treatments, and each treatment had four replicates of 10 birds fed a basal diet (control) or a basal diet supplemented with 0.5% calcium propionate (CP) or 0.5% calcium butyrate (CB) for 8 weeks. The CB and CP treatments had no significant effect (P&gt;0.05) on the laying rate, egg production, egg weight, and feed efficiency. The eggshell percentage was increased from week 2 (P&lt;0.05) and eggshell thickness was elevated at week 8 (P&lt;0.01) by both CP and CB treatments. Compared to the control treatment, the CB treatment increased serum calcium and phosphorus levels at week 4 (P&lt;0.05), whereas the CP and CB treatments decreased serum phosphorus at weeks 6 and 8, respectively (P&lt;0.05). Dietary supplementation had no effect on the bone index and bending strength of the tibia (P&gt;0.05). The calcium and phosphorus content of the tibia was decreased by the CB treatment (P&lt;0.05). In the spleen, NF-κB and IL-6 transcript levels were not influenced (P&gt;0.05) but TNF-α transcript levels were decreased by the CP treatment (P&lt;0.05). In the tibia, the expression levels of NF-κB, TNF-α, and IL-17 were not affected by the CP or CB treatment (P&gt;0.05). The CP and CB treatments had no significant effect on the transcript levels of RANKL, OPG, RNUX2, OPN, α-Clotho, and VDR (P&gt;0.05). In contrast, PHEX transcript levels were increased by the CP treatment (P&lt;0.05). The expression levels of osteocalcin (P=0.094) and FGF23 (P=0.087) tended to decrease under the CB treatment. In conclusion, dietary supplementation of 0.5% calcium butyrate or 0.5% calcium propionate improved the eggshell quality of aged laying hens, possibly as a result of decreased deposition or enhanced mobilization of bone calcium and phosphorus

    3D printed strontium-doped calcium phosphate ceramic scaffold enhances early angiogenesis and promotes bone repair through the regulation of macrophage polarization

    No full text
    The vascularization of bone repair materials is one of the key issues that urgently need to be addressed in the process of bone repair. The changes in macrophage phenotype and function play an important role in the process of vascularization, and endowing bone repair materials with immune regulatory characteristics to enhance angiogenesis is undoubtedly a new strategy to improve the effectiveness of bone repair. In order to improve the effect of tricalcium phosphate (TCP) on vascularization and bone repair, we doped strontium ions (Sr) into TCP (SrTCP) and prepared porous 3D printed SrTCP scaffolds using 3D printing technology, and studied the scaffold mediated macrophage polarization and subsequent vascularization and bone regeneration. The results of the interaction between the scaffold and macrophages showed that the SrTCP scaffold can promote the polarization of macrophages from M1 to M2 and secrete high concentrations of VEGF and PDGF-bb cytokines, which shows excellent angiogenic potential. When human umbilical vein endothelial cells (HUVECs) were co-cultured with macrophage-conditioned medium of SrTCP scaffold, HUVECs exhibited excellent early angiogenesis-promoting effects in terms of scratch healing, angiogenic gene expression, and in vitro tube formation performance. The results of in vivo bone repair experiments showed that the SrTCP scaffold formed a vascular network with high density and quantity in the bone defect area, which could increase the rate of new bone formation and advance the period of bone formation, and finally achieved a better bone repair effect. We observed a cascade effect in which Sr-doped SrTCP scaffold regulate macrophage polarization to enhance angiogenesis and promote bone repair, which may provide a new strategy for the repair of clinical bone defects
    corecore