26 research outputs found

    A preliminary longitudinal study of white matter alteration in cocaine use disorder subjects

    Get PDF
    Background Previous diffusion tensor imaging (DTI) studies have consistently shown that subjects with cocaine use disorder (CocUD) had altered white matter microstructure in the corpus callosum. It is believed that these alterations are due to preexisting factors, chronic cocaine use, or both. However, there is no published longitudinal DTI study on human cocaine users yet which could shed light on the relationship between cocaine use and DTI findings. Methods This study used a longitudinal design and DTI to test if the white matter microstructure shows quicker alteration in CocUD subjects than controls. DTI data were acquired from eleven CocUD subjects who participated a treatment study and eleven non-drug-using controls at baseline (Scan 1) and after ten weeks (Scan 2). The baseline fractional anisotropy (FA), a general measure of white matter microstucture, and the change in FA (ΔFA, equals Scan 1 FA minus Scan 2 FA) were both compared between groups. Results The two groups did not show a difference in FA at baseline. The CocUD subjects had significantly greater ΔFA than the controls in the left splenium of the corpus callosum. In CocUD subjects, greater ΔFA in this region was associated with shorter lifetime cocaine use and greater number of positive cocaine urine samples collected during the treatment. Conclusion The finding in the left splenium is consistent with previous animal studies and provide indirect evidence about the effects of chronic cocaine use on white matter alterations. The subject sample size is small, therefore the results should be treated as preliminary

    Opioid Use Disorder Prediction Using Machine Learning of fMRI Data

    Get PDF
    According to the Centers for Disease Control and Prevention (CDC) more than 932,000 people in the US have died since 1999 from a drug overdose. Just about 75% of drug overdose deaths in 2020 involved Opioid, which suggests that the US is in an Opioid overdose epidemic. Identifying individuals likely to develop Opioid use disorder (OUD) can help public health in planning effective prevention, intervention, drug overdose and recovery policies. Further, a better understanding of prediction of overdose leading to the neurobiology of OUD may lead to new therapeutics. In recent years, very limited work has been done using statistical analysis of functional magnetic resonance imaging (fMRI) methods to analyze the neurobiology of Opioid addictions in humans. In this work, for the first time in the literature, we propose a machine learning (ML) framework to predict OUD users utilizing clinical fMRI-BOLD (Blood oxygen level dependent) signal from OUD users and healthy controls (HC). We first obtain the features and validate these with those extracted from selected brain subcortical areas identified in our previous statistical analysis of the fMRI-BOLD signal discriminating OUD subjects from that of the HC. The selected features from three representative brain areas such as default mode network (DMN), salience network (SN), and executive control network (ECN) for both OUD participants and HC subjects are then processed for OUD and HC subjects’ prediction. Our leave one out cross validated results with sixty-nine OUD and HC cases show 88.40% prediction accuracies. These results suggest that the proposed techniques may be utilized to gain a greater understanding of the neurobiology of OUD leading to novel therapeutic development

    Increased Orbitofrontal Brain Activation after Administration of a Selective Adenosine A2A Antagonist in Cocaine Dependent Subjects

    Get PDF
    Background: Positron Emission Tomography imaging studies provide evidence of reduced dopamine function in cocaine dependent subjects in the striatum, which is correlated with prefrontal cortical glucose metabolism, particularly in the orbitofrontal cortex. However, whether enhancement of dopamine in the striatum in cocaine dependent subjects would be associated with changes in prefrontal cortical brain activation is unknown. One novel class of medications that enhance dopamine function via heteromer formation with dopamine receptors in the striatum is the selective adenosine A2A receptor antagonists. This study sought to determine the effects administration of the selective adenosine A2A receptor antagonist SYN115 on brain function in cocaine dependent subjects. Methodology/Principle Findings: Twelve cocaine dependent subjects underwent two fMRI scans (one after a dose of placebo and one after a dose of 100 mg of SYN115) while performing a working memory task with three levels of difficulty (3, 5, and 7 digits). fMRI results showed that for 7-digit working memory activation there was significantly greater activation from SYN115 compared to placebo in portions of left (L) lateral orbitofrontal cortex, L insula, and L superior and middle temporal pole. Conclusion/Significance: These findings are consistent with enhanced dopamine function in the striatum in cocaine dependent subjects via blockade of adenosine A2A receptors producing increased brain activation in the orbitofrontal cortex and other cortical regions. This suggests that at least some of the changes in brain activation in prefrontal cortical regions in cocaine dependent subjects may be related to altered striatal dopamine function, and that enhancement of dopamine function via adenosine A2A receptor blockade could be explored further for amelioration of neurobehavioral deficits associated with chronic cocaine use

    Effect of scanning duration and sample size on reliability in resting state fMRI dynamic causal modeling analysis

    No full text
    Despite its widespread use, resting-state functional magnetic resonance imaging (rsfMRI) has been criticized for low test-retest reliability. To improve reliability, researchers have recommended using extended scanning durations, increased sample size, and advanced brain connectivity techniques. However, longer scanning runs and larger sample sizes may come with practical challenges and burdens, especially in rare populations. Here we tested if an advanced brain connectivity technique, dynamic causal modeling (DCM), can improve reliability of fMRI effective connectivity (EC) metrics to acceptable levels without extremely long run durations or extremely large samples. Specifically, we employed DCM for EC analysis on rsfMRI data from the Human Connectome Project. To avoid bias, we assessed four distinct DCMs and gradually increased sample sizes in a randomized manner across ten permutations. We employed pseudo true positive and pseudo false positive rates to assess the efficacy of shorter run durations (3.6, 7.2, 10.8, 14.4 min) in replicating the outcomes of the longest scanning duration (28.8 min) when the sample size was fixed at the largest (n = 160 subjects). Similarly, we assessed the efficacy of smaller sample sizes (n = 10, 20, …, 150 subjects) in replicating the outcomes of the largest sample (n = 160 subjects) when the scanning duration was fixed at the longest (28.8 min). Our results revealed that the pseudo false positive rate was below 0.05 for all the analyses. After the scanning duration reached 10.8 min, which yielded a pseudo true positive rate of 92%, further extensions in run time showed no improvements in pseudo true positive rate. Expanding the sample size led to enhanced pseudo true positive rate outcomes, with a plateau at n = 70 subjects for the targeted top one-half of the largest ECs in the reference sample, regardless of whether the longest run duration (28.8 min) or the viable run duration (10.8 min) was employed. Encouragingly, smaller sample sizes exhibited pseudo true positive rates of approximately 80% for n = 20, and 90% for n = 40 subjects. These data suggest that advanced DCM analysis may be a viable option to attain reliable metrics of EC when larger sample sizes or run times are not feasible

    Diffusion tensor imaging and decision making in cocaine dependence.

    Get PDF
    BACKGROUND: Chronic stimulant abuse is associated with both impairment in decision making and structural abnormalities in brain gray and white matter. Recent data suggest these structural abnormalities may be related to functional impairment in important behavioral processes. METHODOLOGY/PRINCIPAL FINDINGS: In 15 cocaine-dependent and 18 control subjects, we examined relationships between decision-making performance on the Iowa Gambling Task (IGT) and white matter integrity as measured by diffusion tensor imaging (DTI). Whole brain voxelwise analyses showed that, relative to controls, the cocaine group had lower fractional anisotropy (FA) and higher mean of the second and third eigenvalues (lambda perpendicular) in frontal and parietal white matter regions and the corpus callosum. Cocaine subjects showed worse performance on the IGT, notably over the last 40 trials. Importantly, FA and lambda perpendicular values in these regions showed a significant relationship with IGT performance on the last 40 trials. CONCLUSIONS: Compromised white matter integrity in cocaine dependence may be related to functional impairments in decision making
    corecore