1,976 research outputs found

    Detrended fluctuation analysis on the correlations of complex networks under attack and repair strategy

    Full text link
    We analyze the correlation properties of the Erdos-Renyi random graph (RG) and the Barabasi-Albert scale-free network (SF) under the attack and repair strategy with detrended fluctuation analysis (DFA). The maximum degree k_max, representing the local property of the system, shows similar scaling behaviors for random graphs and scale-free networks. The fluctuations are quite random at short time scales but display strong anticorrelation at longer time scales under the same system size N and different repair probability p_re. The average degree , revealing the statistical property of the system, exhibits completely different scaling behaviors for random graphs and scale-free networks. Random graphs display long-range power-law correlations. Scale-free networks are uncorrelated at short time scales; while anticorrelated at longer time scales and the anticorrelation becoming stronger with the increase of p_re.Comment: 5 pages, 4 figure

    Suppression of Superconductivity by Twin Boundaries in FeSe

    Get PDF
    Low-temperature scanning tunneling microscopy and spectroscopy are employed to investigate twin boundaries in stoichiometric FeSe films grown by molecular beam epitaxy. Twin boundaries can be unambiguously identified by imaging the 90{\deg} change in the orientation of local electronic dimers from Fe site impurities on either side. Twin boundaries run at approximately 45{\deg} to the Fe-Fe bond directions, and noticeably suppress the superconducting gap, in contrast with the recent experimental and theoretical findings in other iron pnictides. Furthermore, vortices appear to accumulate on twin boundaries, consistent with the degraded superconductivity there. The variation in superconductivity is likely caused by the increased Se height in the vicinity of twin boundaries, providing the first local evidence for the importance of this height to the mechanism of superconductivity.Comment: 6 pages, 7 figure

    Visualizing the elongated vortices in γ\gamma-Ga nanostrips

    Get PDF
    We study the magnetic response of superconducting γ\gamma-Ga via low temperature scanning tunneling microscopy and spectroscopy. The magnetic vortex cores rely substantially on the Ga geometry, and exhibit an unexpectedly-large axial elongation with aspect ratio up to 40 in rectangular Ga nano-strips (width ll << 100 nm). This is in stark contrast with the isotropic circular vortex core in a larger round-shaped Ga island. We suggest that the unusual elongated vortices in Ga nanostrips originate from geometric confinement effect probably via the strong repulsive interaction between the vortices and Meissner screening currents at the sample edge. Our finding provides novel conceptual insights into the geometrical confinement effect on magnetic vortices and forms the basis for the technological applications of superconductors.Comment: published in Phys. Rev. B as a Rapid Communicatio
    • …
    corecore