48 research outputs found

    LW-ISP: A Lightweight Model with ISP and Deep Learning

    Full text link
    The deep learning (DL)-based methods of low-level tasks have many advantages over the traditional camera in terms of hardware prospects, error accumulation and imaging effects. Recently, the application of deep learning to replace the image signal processing (ISP) pipeline has appeared one after another; however, there is still a long way to go towards real landing. In this paper, we show the possibility of learning-based method to achieve real-time high-performance processing in the ISP pipeline. We propose LW-ISP, a novel architecture designed to implicitly learn the image mapping from RAW data to RGB image. Based on U-Net architecture, we propose the fine-grained attention module and a plug-and-play upsampling block suitable for low-level tasks. In particular, we design a heterogeneous distillation algorithm to distill the implicit features and reconstruction information of the clean image, so as to guide the learning of the student model. Our experiments demonstrate that LW-ISP has achieved a 0.38 dB improvement in PSNR compared to the previous best method, while the model parameters and calculation have been reduced by 23 times and 81 times. The inference efficiency has been accelerated by at least 15 times. Without bells and whistles, LW-ISP has achieved quite competitive results in ISP subtasks including image denoising and enhancement.Comment: 16 PAGES, ACCEPTED AS A CONFERENCE PAPER AT: BMVC 202

    Chiplet Actuary: A Quantitative Cost Model and Multi-Chiplet Architecture Exploration

    Full text link
    Multi-chip integration is widely recognized as the extension of Moore's Law. Cost-saving is a frequently mentioned advantage, but previous works rarely present quantitative demonstrations on the cost superiority of multi-chip integration over monolithic SoC. In this paper, we build a quantitative cost model and put forward an analytical method for multi-chip systems based on three typical multi-chip integration technologies to analyze the cost benefits from yield improvement, chiplet and package reuse, and heterogeneity. We re-examine the actual cost of multi-chip systems from various perspectives and show how to reduce the total cost of the VLSI system through appropriate multi-chiplet architecture.Comment: Accepted by and to be presented at DAC 202

    Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self Distillation

    Full text link
    Convolutional neural networks have been widely deployed in various application scenarios. In order to extend the applications' boundaries to some accuracy-crucial domains, researchers have been investigating approaches to boost accuracy through either deeper or wider network structures, which brings with them the exponential increment of the computational and storage cost, delaying the responding time. In this paper, we propose a general training framework named self distillation, which notably enhances the performance (accuracy) of convolutional neural networks through shrinking the size of the network rather than aggrandizing it. Different from traditional knowledge distillation - a knowledge transformation methodology among networks, which forces student neural networks to approximate the softmax layer outputs of pre-trained teacher neural networks, the proposed self distillation framework distills knowledge within network itself. The networks are firstly divided into several sections. Then the knowledge in the deeper portion of the networks is squeezed into the shallow ones. Experiments further prove the generalization of the proposed self distillation framework: enhancement of accuracy at average level is 2.65%, varying from 0.61% in ResNeXt as minimum to 4.07% in VGG19 as maximum. In addition, it can also provide flexibility of depth-wise scalable inference on resource-limited edge devices.Our codes will be released on github soon.Comment: 10page

    Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention

    Full text link
    Most feedforward convolutional neural networks spend roughly the same efforts for each pixel. Yet human visual recognition is an interaction between eye movements and spatial attention, which we will have several glimpses of an object in different regions. Inspired by this observation, we propose an end-to-end trainable Multi-Glimpse Network (MGNet) which aims to tackle the challenges of high computation and the lack of robustness based on recurrent downsampled attention mechanism. Specifically, MGNet sequentially selects task-relevant regions of an image to focus on and then adaptively combines all collected information for the final prediction. MGNet expresses strong resistance against adversarial attacks and common corruptions with less computation. Also, MGNet is inherently more interpretable as it explicitly informs us where it focuses during each iteration. Our experiments on ImageNet100 demonstrate the potential of recurrent downsampled attention mechanisms to improve a single feedforward manner. For example, MGNet improves 4.76% accuracy on average in common corruptions with only 36.9% computational cost. Moreover, while the baseline incurs an accuracy drop to 7.6%, MGNet manages to maintain 44.2% accuracy in the same PGD attack strength with ResNet-50 backbone. Our code is available at https://github.com/siahuat0727/MGNet.Comment: Accepted at BMVC 202

    Learn from Unpaired Data for Image Restoration: A Variational Bayes Approach

    Full text link
    Collecting paired training data is difficult in practice, but the unpaired samples broadly exist. Current approaches aim at generating synthesized training data from the unpaired samples by exploring the relationship between the corrupted and clean data. This work proposes LUD-VAE, a deep generative method to learn the joint probability density function from data sampled from marginal distributions. Our approach is based on a carefully designed probabilistic graphical model in which the clean and corrupted data domains are conditionally independent. Using variational inference, we maximize the evidence lower bound (ELBO) to estimate the joint probability density function. Furthermore, we show that the ELBO is computable without paired samples under the inference invariant assumption. This property provides the mathematical rationale of our approach in the unpaired setting. Finally, we apply our method to real-world image denoising and super-resolution tasks and train the models using the synthetic data generated by the LUD-VAE. Experimental results validate the advantages of our method over other learnable approaches

    Point-GCC: Universal Self-supervised 3D Scene Pre-training via Geometry-Color Contrast

    Full text link
    Geometry and color information provided by the point clouds are both crucial for 3D scene understanding. Two pieces of information characterize the different aspects of point clouds, but existing methods lack an elaborate design for the discrimination and relevance. Hence we explore a 3D self-supervised paradigm that can better utilize the relations of point cloud information. Specifically, we propose a universal 3D scene pre-training framework via Geometry-Color Contrast (Point-GCC), which aligns geometry and color information using a Siamese network. To take care of actual application tasks, we design (i) hierarchical supervision with point-level contrast and reconstruct and object-level contrast based on the novel deep clustering module to close the gap between pre-training and downstream tasks; (ii) architecture-agnostic backbone to adapt for various downstream models. Benefiting from the object-level representation associated with downstream tasks, Point-GCC can directly evaluate model performance and the result demonstrates the effectiveness of our methods. Transfer learning results on a wide range of tasks also show consistent improvements across all datasets. e.g., new state-of-the-art object detection results on SUN RGB-D and S3DIS datasets. Codes will be released at https://github.com/Asterisci/Point-GCC
    corecore