3,860 research outputs found

    Molecular genetics of monogenic movement disorders:making meaning of rare variants

    Get PDF
    Parkinson's disease (PD) and Spinocerebellar ataxia (SCA) are two age-related neurodegenerative disease that affect the movement of patients. A curative treatment does not exist for both diseases as the molecular mechanisms remain unclear. For a subset of PD cases and all SCA cases, the disease is caused by pathogenic variants in certain genes. Therefore, studying these variants provides molecular insights in the disease mechanisms. Specifically, using a toolbox of molecular techniques, including CRISPR-Cas9 gene-editing, we investigated genetic variants that are linked to SCA and PD to increase our understanding of these variants and the associated defective cellular pathways. We showed that the variants linked to PD cause defects in different pathways involving the removal of cellular waste products, such as the endolysosomal system and mitophagy. Furthermore, we made observations that hint to developmental defects in SCA. Together, we made some meaning of the molecular mechanisms underlying two monogenic movement disorders

    QCD radiative correction to color-octet J/ψJ/\psi inclusive production at B Factories

    Full text link
    In nonrelativistic Quantum Chromodynamics (NRQCD), we study the next-to-leading order (NLO) QCD radiative correction to the color-octet J/ψJ/\psi inclusive production at B Factories. Compared with the leading-order (LO) result, the NLO QCD corrections are found to enhance the short-distance coefficients in the color-octet J/ψJ/\psi production e+eβˆ’β†’ccΛ‰(3P0(8)or3P0(8))g e^+ e^-\to c \bar c (^3P_0^{(8)} {\rm or} ^3P_0^{(8)})g by a factor of about 1.9. Moreover, the peak at the endpoint in the J/ψJ/\psi energy distribution predicted at LO can be smeared by the NLO corrections, but the major color-octet contribution still comes from the large energy region of J/ψJ/\psi. By fitting the latest data of Οƒ(e+eβˆ’β†’J/ψ+Xnonβˆ’ccΛ‰)\sigma(e^{+}e^{-}\to J/\psi+X_{\mathrm{non-c\bar{c}}}) observed by Belle, we find that the values of color-octet matrix elements are much smaller than expected earlier by using the naive velocity scaling rules or extracted from fitting experimental data with LO calculations. As the most stringent constraint by setting the color-singlet contribution to be zero in e+eβˆ’β†’J/ψ+Xnonβˆ’ccΛ‰e^{+}e^{-}\to J/\psi+X_{\mathrm{non-c\bar{c}}}, we get an upper limit of the color-octet matrix element, +4.0<0∣OJ/ψ[3P0(8)]∣0>/mc2<(2.0Β±0.6)Γ—10βˆ’2GeV3 + 4.0 <0| {\cal O}^{J/\psi} [{}^3P_0^{(8)}]|0>/m_c^2 <(2.0 \pm 0.6)\times 10^{-2} {\rm GeV}^3 at NLO in Ξ±s\alpha_s.Comment: 18 pages, 8 figure
    • …
    corecore