46 research outputs found

    CARNet:Compression Artifact Reduction for Point Cloud Attribute

    Full text link
    A learning-based adaptive loop filter is developed for the Geometry-based Point Cloud Compression (G-PCC) standard to reduce attribute compression artifacts. The proposed method first generates multiple Most-Probable Sample Offsets (MPSOs) as potential compression distortion approximations, and then linearly weights them for artifact mitigation. As such, we drive the filtered reconstruction as close to the uncompressed PCA as possible. To this end, we devise a Compression Artifact Reduction Network (CARNet) which consists of two consecutive processing phases: MPSOs derivation and MPSOs combination. The MPSOs derivation uses a two-stream network to model local neighborhood variations from direct spatial embedding and frequency-dependent embedding, where sparse convolutions are utilized to best aggregate information from sparsely and irregularly distributed points. The MPSOs combination is guided by the least square error metric to derive weighting coefficients on the fly to further capture content dynamics of input PCAs. The CARNet is implemented as an in-loop filtering tool of the GPCC, where those linear weighting coefficients are encapsulated into the bitstream with negligible bit rate overhead. Experimental results demonstrate significant improvement over the latest GPCC both subjectively and objectively.Comment: 13pages, 8figure

    Green synthesis of silver nanoparticles using Eucommia ulmoides leaf extract for inhibiting stem end bacteria in cut tree peony flowers

    Get PDF
    Tree peony (Paeonia suffruticosa Andr.) is a popular cut flower among ornamental plants. However, its short vase life severely hinders the production and application of cut tree peony flowers. To extend the postharvest longevity and improve the horticultural value, silver nanoparticles (Ag-NPs) was applied for reducing bacterial proliferation and xylem blockage in cut tree peony flowers in vitro and in vivo. Ag-NPs was synthesized with the leaf extract of Eucommia ulmoides and characterized. The Ag-NPs aqueous solution showed inhibitory activity against bacterial populations isolated from stem ends of cut tree peony ‘Luoyang Hong’ in vitro. The minimum inhibitory concentration (MIC) was 10 mg L−1. Compared with the control, pretreatments with Ag-NPs aqueous solution at 5 and 10 mg L−1 for 24 h increased flower diameter, relative fresh weight (RFW), and water balance of tree peony ‘Luoyang Hong’ flowers. Additionally, malondialdehyde (MDA) and H2O2 content in pretreated petals were lower than the control during the vase life. The activities of superoxide dismutase (SOD) and catalase (CAT) in pretreated petals were lower than that of the control at the early vase stage and higher at the late vase life. Furthermore, pretreatments with Ag-NPs aqueous solution at 10 mg L−1 for 24 h could reduce bacterial proliferation in the xylem vessels on the stem ends by confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM). Overall, pretreatments with green synthesized Ag-NPs aqueous solution effectively reduced bacteria-induced xylem blockage of cut tree peony, resulting in improved water uptake, extended vase life, and enhanced postharvest quality. Therefore, this technique can be used as a promising postharvest technology in the cut flower industry

    Comparative pulmonary toxicity of two Ceria nanoparticles with the same primary size

    Get PDF
    Ceria nanoparticles (nano-ceria) have recently gained a wide range of applications, which might pose unwanted risks to both the environment and human health. The greatest potential for the environmental discharge of nano-ceria appears to be in their use as a diesel fuel additive. The present study was designed to explore the pulmonary toxicity of nano-ceria in mice after a single exposure via intratracheal instillation. Two types of nano-ceria with the same distribution of a primary size (3–5 nm), but different redox activity, were used: Ceria-p, synthesized by a precipitation route, and Ceria-h, synthesized by a hydrothermal route. Both Ceria-p and Ceria-h induced oxidative stress, inflammatory responses and cytotoxicity in mice, but their toxicological profiles were quite different. The mean size of Ceria-p agglomerates was much smaller compared to Ceria-h, thereby causing a more potent acute inflammation, due to their higher number concentration of agglomerates and higher deposition rate in the deep lung. Ceria-h had a higher reactivity to catalyzing the generation of reactive oxygen species (ROS), and caused two waves of lung injury: bronchoalveolar lavage (BAL) inflammation and cytotoxicity in the early stage and redox-activity-evoked lipid peroxidation and pro-inflammation in the latter stage. Therefore, the size distribution of ceria-containing agglomerates in the exhaust, as well as their surface chemistry are essential characteristics to assess the potential risks of using nano-ceria as a fuel additive

    Salmon Calcitonin Exerts an Antidepressant Effect by Activating Amylin Receptors

    Get PDF
    Depressive disorder is defined as a psychiatric disease characterized by the core symptoms of anhedonia and learned helplessness. Currently, the treatment of depression still calls for medications with high effectiveness, rapid action, and few side effects, although many drugs, including fluoxetine and ketamine, have been approved for clinical usage by the Food and Drug Administration (FDA). In this study, we focused on calcitonin as an amylin receptor polypeptide, of which the antidepressant effect has not been reported, even if calcitonin gene-related peptides have been previously demonstrated to improve depressive-like behaviors in rodents. Here, the antidepressant potential of salmon calcitonin (sCT) was first evaluated in a chronic restraint stress (CRS) mouse model of depression. We observed that the immobility duration in CRS mice was significantly increased during the tail suspension test and forced swimming test. Furthermore, a single administration of sCT was found to successfully rescue depressive-like behaviors in CRS mice. Lastly, AC187 as a potent amylin receptor antagonist was applied to investigate the roles of amylin receptors in depression. We found that AC187 significantly eliminated the antidepressant effects of sCT. Taken together, our data revealed that sCT could ameliorate a depressive-like phenotype probably via the amylin signaling pathway. sCT should be considered as a potential therapeutic candidate for depressive disorder in the future

    Seizing the window of opportunity to mitigate the impact of climate change on the health of Chinese residents

    Get PDF
    The health threats posed by climate change in China are increasing rapidly. Each province faces different health risks. Without a timely and adequate response, climate change will impact lives and livelihoods at an accelerated rate and even prevent the achievement of the Healthy and Beautiful China initiatives. The 2021 China Report of the Lancet Countdown on Health and Climate Change is the first annual update of China’s Report of the Lancet Countdown. It comprehensively assesses the impact of climate change on the health of Chinese households and the measures China has taken. Invited by the Lancet committee, Tsinghua University led the writing of the report and cooperated with 25 relevant institutions in and outside of China. The report includes 25 indicators within five major areas (climate change impacts, exposures, and vulnerability; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement) and a policy brief. This 2021 China policy brief contains the most urgent and relevant indicators focusing on provincial data: The increasing health risks of climate change in China; mixed progress in responding to climate change. In 2020, the heatwave exposures per person in China increased by 4.51 d compared with the 1986–2005 average, resulting in an estimated 92% increase in heatwave-related deaths. The resulting economic cost of the estimated 14500 heatwave-related deaths in 2020 is US$176 million. Increased temperatures also caused a potential 31.5 billion h in lost work time in 2020, which is equivalent to 1.3% of the work hours of the total national workforce, with resulting economic losses estimated at 1.4% of China’s annual gross domestic product. For adaptation efforts, there has been steady progress in local adaptation planning and assessment in 2020, urban green space growth in 2020, and health emergency management in 2019. 12 of 30 provinces reported that they have completed, or were developing, provincial health adaptation plans. Urban green space, which is an important heat adaptation measure, has increased in 18 of 31 provinces in the past decade, and the capacity of China’s health emergency management increased in almost all provinces from 2018 to 2019. As a result of China’s persistent efforts to clean its energy structure and control air pollution, the premature deaths due to exposure to ambient particulate matter of 2.5 μm or less (PM2.5) and the resulting costs continue to decline. However, 98% of China’s cities still have annual average PM2.5 concentrations that are more than the WHO guideline standard of 10 μg/m3. It provides policymakers and the public with up-to-date information on China’s response to climate change and improvements in health outcomes and makes the following policy recommendations. (1) Promote systematic thinking in the related departments and strengthen multi-departmental cooperation. Sectors related to climate and development in China should incorporate health perspectives into their policymaking and actions, demonstrating WHO’s and President Xi Jinping’s so-called health-in-all-policies principle. (2) Include clear goals and timelines for climate-related health impact assessments and health adaptation plans at both the national and the regional levels in the National Climate Change Adaptation Strategy for 2035. (3) Strengthen China’s climate mitigation actions and ensure that health is included in China’s pathway to carbon neutrality. By promoting investments in zero-carbon technologies and reducing fossil fuel subsidies, the current rebounding trend in carbon emissions will be reversed and lead to a healthy, low-carbon future. (4) Increase awareness of the linkages between climate change and health at all levels. Health professionals, the academic community, and traditional and new media should raise the awareness of the public and policymakers on the important linkages between climate change and health.</p

    A Microfabricated Bandpass Filter with Coarse-Tuning and Fine-Tuning Ability Based on IPD Process and PCB Artwork

    No full text
    In this paper, a bandpass filter (BPF) was developed utilizing GaAs-based integrated passive device technology which comprises an asymmetrical spiral inductor and an interleaved array capacitor, possessing two tuning modes: coarse-tuning and fine-tuning. By altering the number of layers and radius of the GaAs substrate metal spheres, capacitance variation from 0.071 to 0.106 pF for coarse-tuning, and of 0.0015 pF for fine-tuning, can be achieved. Five air bridges were employed in the asymmetrical spiral inductor to save space, contributing to a compact chip area of 0.015λ0 × 0.018λ0. The BPF chip was installed on the printed circuit board artwork with Au bonding wire and attached to a die sink. Measured results demonstrate an insertion loss of 0.38 dB and a return loss of 21.5 dB at the center frequency of 2.147 GHz. Furthermore, under coarse-tuning mode, variation in the center frequency from 1.956 to 2.147 GHz and transmission zero frequency from 4.721 to 5.225 GHz can be achieved. Under fine-tuning mode, the minimum tuning value and the average tuning value of the proposed BPF can be accurate to 1.0 MHz and 4.7 MHz for the center frequency and 1.0 MHz and 12.8 MHz for the transmission zero frequency, respectively
    corecore