57 research outputs found

    A Resonance Model for Spontaneous Cortical Activity

    Full text link
    How human brain function emerges from structure has intrigued researchers for decades and numerous models have been put forward, yet none of them yields a close structure-function relation. Here we present a resonance model based on neuronal spike timing dependent plasticity (STDP) principle to describe the spontaneous cortical activity by incorporating the dynamic interactions between neuronal populations into a wave equation, which is able to accurately predict the resting brain functional connectivity (FC), including the resting-state networks. Besides, the proposed model provides strong theoretical and experimental evidences that the spontaneous dynamic coupling between brain regions fluctuates with a low frequency. Crucially, it is able to account for how the negative functional correlations emerge during resonance. We test the model with a large cohort of subjects (1038) from the Human Connectome Project (HCP) S1200 release in both time and frequency domain, which exhibits superior performance to existing eigen-decomposition models

    Research on the Stability of Pickering Emulsion and Its Application in Food Field

    Get PDF
    Pickering emulsions is a new emulsions system formed by replacing traditional emulsifiers with solid particles, which has some advantages such as strong stability, environmentally-friendly, high safety and so on. It has been highly favored in the fields of food, cosmetics, chemical materials and biomedicine. Based on the stability mechanism of Pickering emulsions, this review mainly discusses relevant factors affecting its stability from six aspects, including the type of solid particles, shape of solid particles, concentration of solid particles, surface charge of aqueous phase, volume fraction of oil-water phase and the wettability. Meanwhile, the achievements of domestic and overseas on Pickering emulsions are also summarized, including preparing the intelligent food films, preventing the lipid oxidation, delivering the bioactive substances, synthesizing the molecularly imprinted polymers, achieving biphasic catalysis, and constructing 4D printed food raw materials in recent years. This paper aims to provide theoretical basis and technical support to a certain extent for the diversified development of food industry and other related fields

    Kaiso (ZBTB33) Downregulation by Mirna-181a Inhibits Cell Proliferation, Invasion, and the Epithelial–Mesenchymal Transition in Glioma Cells

    Get PDF
    Background/Aims: Kaiso (ZBTB33) expression is closely associated with the progression of many cancers and microRNA (miRNA) processing. MiR-181a plays critical roles in multiple cancers; however, its precise mechanisms in glioma have not been well clarified. The goal of this study was to evaluate the interaction between Kaiso and miR-181a in glioma. Methods: Quantitative real-time PCR (qRT-PCR) was performed to detect the levels of Kaiso and miR-181a in glioma tissues and cell lines. Cell proliferation, invasion, and the epithelial–mesenchymal transition (EMT) were evaluated to analyze the biological functions of miR-181a and Kaiso in glioma cells. The mRNA and protein levels of Kaiso were measured by qRT-PCR and western blotting, respectively. Meanwhile, luciferase assays were performed to validate Kaiso as a miR-181a target in glioma cells. Results: We found that the level of miR-181a was the lowest among miR-181a–d in glioma tissues and cell lines, and the low level of miR-181a was closely associated with the increased expression of Kaiso in glioma tissues. Moreover, transfection of miR-181a significantly inhibited the proliferation, invasion, and EMT of glioma cells, whereas knockdown of miR-181a had the opposite effect. Bioinformatics analysis predicted that Kaiso was a potential target gene of miR-181a, and the luciferase reporter assay demonstrated that miR-181a could directly target Kaiso. In addition, Kaiso silencing had similar effects as miR-181a overexpression in glioma cells, whereas overexpression of Kaiso in glioma cells partially reversed the inhibitory effects of the miR-181a mimic. Conclusionss: miR-181a inhibited the proliferation, invasion, and EMT of glioma cells by directly targeting and downregulating Kaiso expression

    Transcriptional Regulation of PP2A-Aα Is Mediated by Multiple Factors Including AP-2α, CREB, ETS-1, and SP-1

    Get PDF
    Protein phosphatases-2A (PP-2A) is a major serine/threonine phosphatase and accounts for more than 50% serine/threonine phosphatase activity in eukaryotes. The holoenzyme of PP-2A consists of the scaffold A subunit, the catalytic C subunit and the regulatory B subunit. The scaffold subunits, PP2A-Aα/β, provide a platform for both C and B subunits to bind, thus playing a crucial role in providing specific PP-2A activity. Mutation of the two genes encoding PP2A-Aα/β leads to carcinogenesis and likely other human diseases. Regulation of these genes by various factors, both extracellular and intracellular, remains largely unknown. In the present study, we have conducted functional dissection of the promoter of the mouse PP2A-Aα gene. Our results demonstrate that the proximal promoter of the mouse PP2A-Aα gene contains numerous cis-elements for the binding of CREB, ETS-1, AP-2α, SP-1 besides the putative TFIIB binding site (BRE) and the downstream promoter element (DPE). Gel mobility shifting assays revealed that CREB, ETS-1, AP-2α, and SP-1 all bind to PP2A-Aα gene promoter. In vitro mutagenesis and reporter gene activity assays reveal that while SP-1 displays negative regulation, CREB, ETS-1 and AP-2Aα all positively regulate the promoter of the PP2A-Aα gene. ChIP assays further confirm that all the above transcription factors participate the regulation of PP2A-Aα gene promoter. Together, our results reveal that multiple transcription factors regulate the PP2A-Aα gene

    Drug-Tolerant Cancer Cells Show Reduced Tumor-Initiating Capacity: Depletion of CD44+ Cells and Evidence for Epigenetic Mechanisms

    Get PDF
    Cancer stem cells (CSCs) possess high tumor-initiating capacity and have been reported to be resistant to therapeutics. Vice versa, therapy-resistant cancer cells seem to manifest CSC phenotypes and properties. It has been generally assumed that drug-resistant cancer cells may all be CSCs although the generality of this assumption is unknown. Here, we chronically treated Du145 prostate cancer cells with etoposide, paclitaxel and some experimental drugs (i.e., staurosporine and 2 paclitaxel analogs), which led to populations of drug-tolerant cells (DTCs). Surprisingly, these DTCs, when implanted either subcutaneously or orthotopically into NOD/SCID mice, exhibited much reduced tumorigenicity or were even non-tumorigenic. Drug-tolerant DLD1 colon cancer cells selected by a similar chronic selection protocol also displayed reduced tumorigenicity whereas drug-tolerant UC14 bladder cancer cells demonstrated either increased or decreased tumor-regenerating capacity. Drug-tolerant Du145 cells demonstrated low proliferative and clonogenic potential and were virtually devoid of CD44+ cells. Prospective knockdown of CD44 in Du145 cells inhibited cell proliferation and tumor regeneration, whereas restoration of CD44 expression in drug-tolerant Du145 cells increased cell proliferation and partially increased tumorigenicity. Interestingly, drug-tolerant Du145 cells showed both increases and decreases in many “stemness” genes. Finally, evidence was provided that chronic drug exposure generated DTCs via epigenetic mechanisms involving molecules such as CD44 and KDM5A. Our results thus reveal that 1) not all DTCs are necessarily CSCs; 2) conventional chemotherapeutic drugs such as taxol and etoposide may directly target CD44+ tumor-initiating cells; and 3) DTCs generated via chronic drug selection involve epigenetic mechanisms

    Fault Diagnosis Feature Extraction of Marine Rolling Bearing Based on MEMD and Pe

    No full text

    Effect of the physical aging on the secondary

    No full text
    Dynamic mechanical relaxation processes, i.e., main (α) relaxation and secondary (β) relaxation, are important issues to understand mechanical deformation, atomic diffusion as well as glass transition phenomenon of metallic glasses. In current work, La68Ni15Al15Cu2 metallic glass was selected as a protocol glass system. Mechanical relaxation processes were probed by dynamic mechanical analysis. The effects of annealing at different temperatures were analyzed by Kohlrausch–Williams–Watts (KWW)-type equation. The Kohlrausch exponent βKWW reflects the deviation from a single Debye relaxation, indicating the fact that dynamics in metallic glass are actually heterogeneous originating from the structural heterogeneity. The effects of thermal treatments were also discussed, which provides a potential solution to tune the relaxation behaviors in metallic glasses

    A Smartphone Camera-Based Indoor Positioning Algorithm of Crowded Scenarios with the Assistance of Deep CNN

    No full text
    Considering the installation cost and coverage, the received signal strength indicator (RSSI)-based indoor positioning system is widely used across the world. However, the indoor positioning performance, due to the interference of wireless signals that are caused by the complex indoor environment that includes a crowded population, cannot achieve the demands of indoor location-based services. In this paper, we focus on increasing the signal strength estimation accuracy considering the population density, which is different to the other RSSI-based indoor positioning methods. Therefore, we propose a new wireless signal compensation model considering the population density, distance, and frequency. First of all, the number of individuals in an indoor crowded scenario can be calculated by our convolutional neural network (CNN)-based human detection approach. Then, the relationship between the population density and the signal attenuation is described in our model. Finally, we use the trilateral positioning principle to realize the pedestrian location. According to the simulation and tests in the crowded scenarios, the proposed model increases the accuracy of the signal strength estimation by 1.53 times compared to that without considering the human body. Therefore, the localization accuracy is less than 1.37 m, which indicates that our algorithm can improve the indoor positioning performance and is superior to other RSSI models
    corecore