2 research outputs found

    Contour Moments Based Manipulation of Composite Rigid-Deformable Objects With Finite Time Model Estimation and Shape/Position Control

    Full text link
    The robotic manipulation of composite rigid-deformable objects (i.e., those with mixed nonhomogeneous stiffness properties) is a challenging problem with clear practical applications that, despite the recent progress in the field, it has not been sufficiently studied in the literature. To deal with this issue, in this article, we propose a new visual servoing method that has the capability to manipulate this broad class of objects (which varies from soft to rigid) with the same adaptive strategy. To quantify the object's infinite-dimensional configuration, our new approach computes a compact feedback vector of 2-D contour moments features. A sliding mode control scheme is then designed to simultaneously ensure the finite-time convergence of both the feedback shape error and the model estimation error. The stability of the proposed framework (including the boundedness of all the signals) is rigorously proved with Lyapunov theory. Detailed simulations and experiments are presented to validate the effectiveness of the proposed approach. To the best of the author's knowledge, this is the first time that contour moments along with finite-time control have been used to solve this difficult manipulation problem.Accepted Author ManuscriptLearning & Autonomous Contro

    Abundant grain boundaries activate highly efficient lithium ion transportation in high rate Li<sub>4</sub>Ti<sub>5</sub>O<sub>12</sub> compact microspheres

    Full text link
    It is a huge challenge for high-tap-density electrodes to achieve high volumetric energy density but without compromising the ionic transportation. Herein, we prepared compact Li4Ti5O12 (LTO) microspheres consisting of densely packed primary nanoparticles. The real space distribution of lithium ions inside the compact LTO was revealed by using scanning transmission electron microscopy with electron energy loss spectroscopy (STEM-EELS) to identify the function of grain boundaries for lithium ion transportation during lithiation. The as-prepared LTO microspheres possess a high tap density (1.23 g cm-3) and an ultra-small specific surface area (2.40 m2 g-1). Impressively, the compact LTO microspheres present excellent electrochemical performance. At high rates of 5C, 10C and 20C, the LTO microspheres show a specific capacity of 146.6, 138.2 and 111 mA h g-1, respectively. The capacity retention remains at 97.8% at 5C after 500 cycles. The STEM-EELS results indicate that the lithiation reaction of LTO is firstly initiated at grain boundaries during the high rate lithiation process and then diffuses to the bulk area. The abundant grain boundaries in compact LTO microspheres can form a highly efficient conductive network to preferentially transport the ions, which contributes to high volumetric and gravimetric energy density simultaneously.Accepted Author ManuscriptRST/Fundamental Aspects of Materials and EnergyRST/Storage of Electrochemical Energ
    corecore