1,542 research outputs found
Impact of calcium hydroxide on physical characteristics and leaching stability of metakaolin-based geopolymer waste form containing radioactive borate waste
Please click Additional Files below to see the full abstract
Intrinsically Stretchable Three Primary Light-Emitting Films Enabled By Elastomer Blend For Polymer Light-Emitting Diodes
Intrinsically stretchable light-emitting materials are crucial for skin-like wearable displays; however, their color range has been limited to green-like yellow lights owing to the restricted stretchable light-emitting materials (super yellow series materials). To develop skin-like full-color displays, three intrinsically stretchable primary light-emitting materials [red, green, and blue (RGB)] are essential. In this study, we report three highly stretchable primary light-emitting films made from a polymer blend of conventional RGB light-emitting polymers and a nonpolar elastomer. The blend films consist of multidimensional nanodomains of light-emitting polymers that are interconnected in an elastomer matrix for efficient light-emitting under strain. The RGB blend films exhibited over 1000 cd/m2 luminance with low turn-on voltage (Von) and the selectively stretched blend films on rigid substrate maintained stable light-emitting performance up to 100% strain even after 1000 multiple stretching cycles
CSF Otorrhea Resulting from Osteoradionecrosis of the Temporal Bone in a Patient with Recurrent Meningioma
Osteoradionecrosis of the temporal bone is a very rare but potentially lethal complication of radiotherapy for head and neck or skull base tumors. Only two cases of osteoradionecrosis of the temporal bone complicating cerebrospinal fluid (CSF) otorrhea have been reported in the literature. This report describes a case of CSF otorrhea and osteoradionecrosis of the temporal bone in a patient with meningioma who was treated with tympanomastoid surgery and autologous fat obliteration in the mastoid
Splenic Abscess Associated with Endocarditis in a Patient on Hemodialysis: A Case Report
Splenic abscess is an unusual condition usually seen in immunocompromised patients or associated with intravenous drug abuses. Several conditions including trauma, immunodeficiency, corticosteroid and/or immunosuppressive therapy and diabetes mellitus have been listed under the predisposing factors for a splenic abscess. Splenic abscess in a patient on hemodialysis is a rare but life-threatening condition if not corrected. We describe a case of splenic abscess with bacterial endocarditis on maintenance hemodialysis. He had staphylococcal septicemia secondary to bacterial endocarditis at the mitral valve from the dialysis accesssite infection. Although hematologic seeding from endocarditis has been the predisposing factor for splenic abscess, we postulate that access-site infections may predispose hemodialysis patients to splenic abscess. Splenic abscess may be considered as one of the causes when patients on hemodialysis develop unexplained fever
Recommended from our members
Percent atheroma volume: Optimal variable to report whole-heart atherosclerotic plaque burden with coronary CTA, the PARADIGM study.
BACKGROUND AND AIMS:Different methodologies to report whole-heart atherosclerotic plaque on coronary computed tomography angiography (CCTA) have been utilized. We examined which of the three commonly used plaque burden definitions was least affected by differences in body surface area (BSA) and sex. METHODS:The PARADIGM study includes symptomatic patients with suspected coronary atherosclerosis who underwent serial CCTA >2 years apart. Coronary lumen, vessel, and plaque were quantified from the coronary tree on a 0.5 mm cross-sectional basis by a core-lab, and summed to per-patient. Three quantitative methods of plaque burden were employed: (1) total plaque volume (PV) in mm3, (2) percent atheroma volume (PAV) in % [which equaled: PV/vessel volume * 100%], and (3) normalized total atheroma volume (TAVnorm) in mm3 [which equaled: PV/vessel length * mean population vessel length]. Only data from the baseline CCTA were used. PV, PAV, and TAVnorm were compared between patients in the top quartile of BSA vs the remaining, and between sexes. Associations between vessel volume, BSA, and the three plaque burden methodologies were assessed. RESULTS:The study population comprised 1479 patients (age 60.7 ± 9.3 years, 58.4% male) who underwent CCTA. A total of 17,649 coronary artery segments were evaluated with a median of 12 (IQR 11-13) segments per-patient (from a 16-segment coronary tree). Patients with a large BSA (top quartile), compared with the remaining patients, had a larger PV and TAVnorm, but similar PAV. The relation between larger BSA and larger absolute plaque volume (PV and TAVnorm) was mediated by the coronary vessel volume. Independent from the atherosclerotic cardiovascular disease risk (ASCVD) score, vessel volume correlated with PV (P < 0.001), and TAVnorm (P = 0.003), but not with PAV (P = 0.201). The three plaque burden methods were equally affected by sex. CONCLUSIONS:PAV was less affected by patient's body surface area then PV and TAVnorm and may be the preferred method to report coronary atherosclerotic burden
The mu problem and sneutrino inflation
We consider sneutrino inflation and post-inflation cosmology in the singlet
extension of the MSSM with approximate Peccei-Quinn(PQ) symmetry, assuming that
supersymmetry breaking is mediated by gauge interaction. The PQ symmetry is
broken by the intermediate-scale VEVs of two flaton fields, which are
determined by the interplay between radiative flaton soft masses and higher
order terms. Then, from the flaton VEVs, we obtain the correct mu term and the
right-handed(RH) neutrino masses for see-saw mechanism. We show that the RH
sneutrino with non-minimal gravity coupling drives inflation, thanks to the
same flaton coupling giving rise to the RH neutrino mass. After inflation,
extra vector-like states, that are responsible for the radiative breaking of
the PQ symmetry, results in thermal inflation with the flaton field, solving
the gravitino problem caused by high reheating temperature. Our model predicts
the spectral index to be n_s\simeq 0.96 due to the additional efoldings from
thermal inflation. We show that a right dark matter abundance comes from the
gravitino of 100 keV mass and a successful baryogenesis is possible via
Affleck-Dine leptogenesis.Comment: 27 pages, no figures, To appear in JHE
Interplay between Fermi gamma-ray lines and collider searches
We explore the interplay between lines in the gamma-ray spectrum and LHC searches involving missing energy and photons. As an example, we consider a singlet Dirac
fermion dark matter with the mediator for Fermi gamma-ray line at 130 GeV. A new chiral or local U(1) symmetry makes weak-scale dark matter natural and provides the axion or
Z 0 gauge boson as the mediator connecting between dark matter and electroweak gauge bosons. In these models, the mediator particle can be produced in association with a
monophoton at colliders and it produces large missing energy through the decays into a DM pair or ZZ; Z with at least one Z decaying into a neutrino pair. We adopt the monophoton searches with large missing energy at the LHC and impose the bounds on the coupling and mass of the mediator field in the models. We show that the parameter space of the Z 0 mediation model is already strongly constrained by the LHC 8TeV data, whereas a certain region of the parameter space away from the resonance in axion-like mediator models are bounded. We foresee the monophoton bounds on the Z 0 and axion mediation models at the LHC 14 TeV
- …