4,479 research outputs found

    Understand Data Preprocessing for Effective End-to-End Training of Deep Neural Networks

    Full text link
    In this paper, we primarily focus on understanding the data preprocessing pipeline for DNN Training in the public cloud. First, we run experiments to test the performance implications of the two major data preprocessing methods using either raw data or record files. The preliminary results show that data preprocessing is a clear bottleneck, even with the most efficient software and hardware configuration enabled by NVIDIA DALI, a high-optimized data preprocessing library. Second, we identify the potential causes, exercise a variety of optimization methods, and present their pros and cons. We hope this work will shed light on the new co-design of ``data storage, loading pipeline'' and ``training framework'' and flexible resource configurations between them so that the resources can be fully exploited and performance can be maximized

    A New Concept to Reveal Protein Dynamics Based on Energy Dissipation

    Get PDF
    Protein dynamics is essential for its function, especially for intramolecular signal transduction. In this work we propose a new concept, energy dissipation model, to systematically reveal protein dynamics upon effector binding and energy perturbation. The concept is applied to better understand the intramolecular signal transduction during allostery of enzymes. The E. coli allosteric enzyme, aspartokinase III, is used as a model system and special molecular dynamics simulations are designed and carried out. Computational results indicate that the number of residues affected by external energy perturbation (i.e. caused by a ligand binding) during the energy dissipation process shows a sigmoid pattern. Using the two-state Boltzmann equation, we define two parameters, the half response time and the dissipation rate constant, which can be used to well characterize the energy dissipation process. For the allostery of aspartokinase III, the residue response time indicates that besides the ACT2 signal transduction pathway, there is another pathway between the regulatory site and the catalytic site, which is suggested to be the β15-αK loop of ACT1. We further introduce the term “protein dynamical modules” based on the residue response time. Different from the protein structural modules which merely provide information about the structural stability of proteins, protein dynamical modules could reveal protein characteristics from the perspective of dynamics. Finally, the energy dissipation model is applied to investigate E. coli aspartokinase III mutations to better understand the desensitization of product feedback inhibition via allostery. In conclusion, the new concept proposed in this paper gives a novel holistic view of protein dynamics, a key question in biology with high impacts for both biotechnology and biomedicine

    Lattice study on ηc2\eta_{c2} and X(3872)

    Full text link
    Properties of 2+2^{-+} charmonium ηc2\eta_{c2} are investigated in quenched lattice QCD. The mass of ηc2\eta_{c2} is determined to be 3.80(3) GeV, which is close to the mass of DD-wave charmonium ψ(3770)\psi(3770) and in agreement with quark model predictions. The transition width of ηc2γJ/ψ\eta_{c2}\to \gamma J/\psi is also obtained with a value Γ=3.8(9)\Gamma=3.8(9) keV. Since the possible 2+2^{-+} assignment to X(3872) has not been ruled out by experiments, our results help to clarify the nature of X(3872).Comment: 15 pages, 8 figures. typos, grammatical errors and some references corrected, redundant discussions deleted, conclusion does not change. published versio
    corecore