50 research outputs found

    Slepian functions and their use in signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and on the surface of a sphere.Comment: Submitted to the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verla

    Scalar and vector Slepian functions, spherical signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and, particularly for applications in the geosciences, for scalar and vectorial signals defined on the surface of a unit sphere.Comment: Submitted to the 2nd Edition of the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verlag. This is a slightly modified but expanded version of the paper arxiv:0909.5368 that appeared in the 1st Edition of the Handbook, when it was called: Slepian functions and their use in signal estimation and spectral analysi

    Inverse gravimetry: background material and multiscale mollifier approaches

    No full text
    This paper represents an extended version of the publications Freeden (in: Freeden, Nashed, Sonar (eds) Handbook of Geomathematics, 2nd edn, vol 1, Springer, New York, pp 3–78, 2015) and Freeden and Nashed (in: Freeden, Nashed (eds) Handbook of Mathematical Geodesy, Geosystems Mathematics, Birkhäuser, Basel, pp 641–685, 2018c). It deals with the ill-posed problem of transferring input gravitational potential information in the form of Newtonian volume integral values to geological output characteristics of the density contrast function. Some essential properties of the Newton volume integral are recapitulated. Different methodologies of the resolution of the inverse gravimetry problem and their numerical implementations are examined including their dependence on the data source. Three types of input information may be distinguished, namely internal (borehole), terrestrial (surface), and/or external (spaceborne) gravitational data sets. Singular integral theory based inversion of the Newtonian integral equation such as a Haar-type solution is handled in a multiscale framework to decorrelate specific geological signal signatures with respect to inherently given features. Reproducing kernel Hilbert space regularization techniques are studied (together with their transition to certain mollified variants) to provide geological contrast density distributions by “downward continuation” from terrestrial and/or spaceborne data. Numerically, reproducing kernel Hilbert space spline solutions are formulated in terms of Gaussian approximating sums for use of gravimeter data systems

    Noise Modelsfor Ill-Posed Problems

    No full text
    The standard view of noise in ill-posed problems is that it is either deterministic and small (strongly bounded noise) or random and large (not necessarily small). Following Eggerment, LaRiccia and Nashed (2009), a new noise model is investigated, wherein the noise is weakly bounded. Roughly speaking, this means that local averages of the noise are small. A precise definition is given in a Hilbert space setting, and Tikhonov regularization of ill-posed problems with weakly bounded noise is analysed. The analysis unifies the treatment of classical ill-posed problems with strongly bounded noise with that of ill-posed problems with weakly bounded noise. Regularization parameter selection is discussed, and an example on numerical differentiation is presented
    corecore