4 research outputs found

    A Comparative Study of the Effect of Non-Antibiotic Feed Additives on Experimental Colonization of Salmonella Enterica Serovar Enteridis and Intestinal Pathomorphology in Broiler Chickens

    Get PDF
    ABSTRACT The objective of this study was to evaluate the effect of eubiotics on the intestinal morphology of broilers. For this purpose, 125 birds were divided into six groups with two replicates each (10 birds in each replicate). Group A was given a Basal diet. All groups except group A were challenged with Salmonella enterica serovar Enteritidis. Group B was provided the basal diet, group C was fed a Probiotic-added diet; group D was fed a Prebiotics-based diet; group E was given essential oils plus the basal diet; and group F was provided with organic acids plus the basal diet. Two separate experiments were carried out for Salmonella recovery, checking the cecal tonsils and conducting an intestinal pathomorphic evaluation. Villus length, villus width, villus surface area, and crypt depth were measured by micrometry. There was an overall improvement (p<0.05) in intestinal morphometric parameters for all the treatment groups except for the negative control group, which showed the lowest villus height and villus depth values. Maximum villus height (p<0.05) of the duodenum was achieved by group E, which was fed a diet containing essential oils, whereas a maximum villus surface area index (p<0.05) was recorded for the birds of Group D, which were fed a diet containing prebiotics. Maximum villus height (p<0.05) and surface area index in ileum mucosa was recorded (p<0.05) in the birds of group D (treated with prebiotics). It is concluded that there is an overall increase in the gut histology of broilers fed non-antibiotic based feed

    Higher Levels of Aflatoxin M1 Contamination and Poorer Composition of Milk Supplied by Informal Milk Marketing Chains in Pakistan

    Get PDF
    The present study was conducted to observe the seasonal variation in aflatoxin M1 and nutritional quality of milk along informal marketing chains. Milk samples (485) were collected from three different chains over a period of one year. The average concentrations of aflatoxin M1 during the autumn and monsoon seasons (2.60 and 2.59 ppb) were found to be significantly higher (standard error of the difference, SED = 0.21: p = 0.003) than in the summer (1.93 ppb). The percentage of added water in milk was significantly lower (SED = 1.54: p < 0.001) in summer (18.59%) than in the monsoon season (26.39%). There was a significantly different (SED = 2.38: p < 0.001) mean percentage of water added by farmers (6.23%), small collectors (14.97%), large collectors (27.96%) and retailers (34.52%). This was reflected in changes in milk quality along the marketing chain. There was no difference (p = 0.178) in concentration of aflatoxin M1 in milk collected from the farmers (2.12 ppb), small collectors (2.23 ppb), large collectors (2.36 ppb) and retailers (2.58 ppb). The high levels of contamination found in this study, which exceed the standards set by European Union (0.05 ppb) and USFDA (0.5 ppb), demand radical intervention by regulatory authorities and mass awareness of the consequences for consumer health and safety
    corecore