43 research outputs found

    Feasibility of mild hard turning of stainless steel using coated carbide tool

    Get PDF
    Hard turning has been explored as an alternative to the traditional processing technique used to manufacture parts made of hardened steels. However, advanced cutting tool materials for hard turning applications are relatively expensive. The continuous developments in carbide tool material and its coating technology have offered inexpensive cutting tool alternatives for a mild range of hard turning operations. Commercially available TiAlN-coated carbide tool is utilized in this study to perform hard turning of stainless steel within the mild range (47-48 HRC) at various cutting parameters, i.e., cutting speed and feed. Empirical models to measure its performance by quantifying the effect of the cutting parameters to the tool's service lifetime and the machined workpiece's surface roughness are developed. The coated carbide tool performed hard turning with fair tool life and fine surface finish, especially at low cutting parameters as shown by the models' solutions for the optimized input selection

    Machining parameters effect in dry turning of AISI 316L stainless steel using coated carbide tools

    No full text
    Austenitic stainless steel AISI 316L is used in many applications, including chemical industry, nuclear power plants, and medical devices, because of its high mechanical properties and corrosion resistance. Machinability study on the stainless steel is of interest. Toward sustainable manufacturing, this study also includes the power consumption during machining along with other machining responses of cutting force, surface roughness, and tool life. Turning on the stainless steel was performed using coated carbide tool without using cutting fluid. The turning was performed at various cutting speeds (90, 150, and 210 m/min) and feeds (0.10, 0.16, and 0.22 mm/rev). Response surface methodology was adopted in designing the experiments to quantify the effect of cutting speed and feed on the machining responses. It was found that cutting speed was proportional to power consumption and was inversely proportional to tool life, and showed no significant effect on the cutting force and the surface roughness. Feed was proportional to cutting force, power consumption, and surface roughness and was inversely proportional to tool life. Empirical equations developed from the results for all machining responses were shown to be useful in determining the optimum cutting parameters range

    Machining of bone: Analysis of cutting force and surface roughness by turning process

    No full text
    © IMechE 2015. There are millions of orthopedic surgeries and dental implantation procedures performed every year globally. Most of them involve machining of bones and cartilage. However, theoretical and analytical study on bone machining is lagging behind its practice and implementation. This study views bone machining as a machining process with bovine bone as the workpiece material. Turning process which makes the basis of the actually used drilling process was experimented. The focus is on evaluating the effects of three machining parameters, that is, cutting speed, feed, and depth of cut, to machining responses, that is, cutting forces and surface roughness resulted by the turning process. Response surface methodology was used to quantify the relation between the machining parameters and the machining responses. The turning process was done at various cutting speeds (29-156 m/min), depths of cut (0.03 -0.37 mm), and feeds (0.023-0.11 mm/rev). Empirical models of the resulted cutting force and surface roughness as the functions of cutting speed, depth of cut, and feed were developed. Observation using the developed empirical models found that within the range of machining parameters evaluated, the most influential machining parameter to the cutting force is depth of cut, followed by feed and cutting speed. The lowest cutting force was obtained at the lowest cutting speed, lowest depth of cut, and highest feed setting. For surface roughness, feed is the most significant machining condition, followed by cutting speed, and with depth of cut showed no effect. The finest surface finish was obtained at the lowest cutting speed and feed setting

    Fabricating high mechanical strength gamma Fe2O3 nanoparticles filled poly(vinyl alcohol) nanofiber using electrospinning process potentially for tissue engineering scaffold

    No full text
    The use of electrospinning has gained substantial interest in the development of tissue engineering scaffolds due to its ability to produce nanoscale fibers which can mimic the geometry of extracellular tissues. Besides geometry, mechanical property is one of the main elements to be considered when developing tissue engineering scaffolds. In this study, the electrospinning process parameter settings were varied in order to find the optimum setting which can produce electrospun nanofibrous mats with good mechanical properties. Maghemite (γ-Fe 2 O 3 ) was mixed with poly(vinyl alcohol) and then electrospun to form nanofibers. The five input variable factors involved were nanoparticles content, voltage, flow rate, spinning distance, and rotating speed, while the response variable considered was Young's modulus. The performance of electrospinning process was systematically screened and optimized using response surface methodology. This work truly demonstrated the sequential nature of designed experimentation. Additionally, the application of various designs of experiment techniques and concepts was also demonstrated. Results revealed that electrospun nanofibrous mats with maximum Young's modulus (273.51 MPa) was obtained at optimum input settings: 9 v/v% nanoparticle content, 35 kV voltage, 2 mL/h volume flow rate, 8 cm spinning distance, and 3539 r/min of rotating speed. The model was verified successfully by performing confirmation experiments. The nanofibers characterization demonstrated that the nanoparticles were well dispersed inside the nanofibers, and it also showed that the presence of defects on the nanofibers can decrease their mechanical strength. The biocompatibility performance was also evaluated and it was proven that the presence of γ-Fe 2 O 3 enhanced the cell viability and cell growth rate. The developed poly(vinyl alcohol)/γ-Fe 2 O 3 electrospun nanofiber mat has a good potential for tissue engineering scaffolds

    Effect of carburizing and annealing processes in improving the Ni/WC–Co adhesion strength

    No full text
    © 2017, © IMechE 2017. Heat treatment processes have a positive impact in improving the adhesion strength of different interlayer/substrate materials. However, information regarding the effect of these processes in enhancing the adhesion strength of an electroplated nickel interlayer on tungsten carbide substrate for diamond deposition is lacking. In this study, the effect of carburizing and annealing process conditions in enhancing the adhesion strength of the electroplated nickel interlayer was investigated. The heat treatment processes were designed and modeled by the design of experiments technique. The heat-treated specimens were characterized by the field-emission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques. The adhesion of the interlayer before and after the heat treatment was assessed by the scratch test. The results show that the adhesion of the electroplated nickel interlayer was remarkably improved by both processes. The mathematical models for predicting the adhesion strength of the carburized and annealed nickel interlayer within the specified ranges were developed. The maximum adhesion strength of 30 N was obtained from the nickel interlayer annealed at the highest process condition of temperature and time
    corecore