21 research outputs found

    Lipid Classes and Fatty Acid Patterns are Altered in the Brain of Ī³-Synuclein Null Mutant Mice

    Get PDF
    The well-documented link between Ī±-synuclein and the pathology of common human neurodegenerative diseases has increased attention to the synuclein protein family. The involvement of Ī±-synuclein in lipid metabolism in both normal and diseased nervous system has been shown by many research groups. However, the possible involvement of Ī³-synuclein, a closely-related member of the synuclein family, in these processes has hardly been addressed. In this study, the effect of Ī³-synuclein deficiency on the lipid composition and fatty acid patterns of individual lipids from two brain regions has been studied using a mouse model. The level of phosphatidylserine (PtdSer) was increased in the midbrain whereas no changes in the relative proportions of membrane polar lipids were observed in the cortex of Ī³-synuclein-deficient compared to wild-type (WT) mice. In addition, higher levels of docosahexaenoic acid were found in PtdSer and phosphatidylethanolamine (PtdEtn) from the cerebral cortex of Ī³-synuclein null mutant mice. These findings show that Ī³-synuclein deficiency leads to alterations in the lipid profile in brain tissues and suggest that this protein, like Ī±-synuclein, might affect neuronal function via modulation of lipid metabolism

    Neurochemical Aspects of Oxidative and Nitrosative Stress

    No full text
    corecore