48 research outputs found

    High correlation of the proteome patterns in bone marrow and peripheral blood blast cells in patients with acute myeloid leukemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>When comparing myelogenous blasts from bone marrow and peripheral blood, immunophenotyping usually show a strong correlation of expression of surface antigens. However, it remains to be determined, whether this correlation also exists on the level of protein expression.</p> <p>Method</p> <p>Therefore, we investigated both bone marrow and peripheral blood blast cells from six patients with newly diagnosed acute myeloid leukemia (AML) using conventional two-dimensional electrophoresis in the first dimension and linear polyacrylamide gels (12%) in the second dimension. Proteins were visualized using the silver staining method and image analysis was performed using the PDQuest system.</p> <p>Results</p> <p>For each patient over 80 proteins were evaluated in the sample from peripheral blood and bone marrow. We could demonstrate that the protein expression profile of bone marrow did not significantly differ from the expression patterns of peripheral blast cells.</p> <p>Conclusion</p> <p>The proteome-set of leukemic blast cells from marrow and blood, does not differ substantially when drawn from AML patients with over 80 percent blast cells in both compartments. This indicates that in AML, blasts from peripheral blood samples can be considered suitable for investigations of the proteome using 2D-electrophoresis.</p

    Functional Analysis of a Dominant Negative Mutation of Interferon Regulatory Factor 5

    Get PDF
    BACKGROUND: Interferon regulatory factor (IRF) family members have been implicated as critical transcription factors that function in immune response, hematopoietic differentiation and cell growth regulation. Activation of IRF-5 results in the production of pro-inflammatory cytokines such as TNFalpha, IL6 and IL12p40, as well as type I interferons. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we identify a G202C (position relative to translation start codon) missense-mutation transcript of IRF-5 in transformed B and T cell lines, which were either infected or non-infected by viruses, and peripheral blood from ATL or CLL patients. The mutated transcript encodes a novel protein in which the sixty-eighth amino acid, Alanine, is substituted by Proline (IRF-5P68) in the DNA binding domain of IRF-5. IRF-5P68 phenotype results in a complete loss of its DNA-binding activity and functions as a dominant negative molecule through interacting with wild type IRF-5. Co-expression of IRF-5P68 inhibits MyD88-mediated IRF-5 transactivation. Moreover, Toll-like receptor (TLR)-dependent IL6 and IL12P40 production induced by lipopolysaccharide (LPS), R837 or CpG ODN 1826 was reduced in IRF-5 (P68) expressing cells as compared to the control cells. CONCLUSION: IRF-5P68 acts as a dominant negative regulator that interferes with IRF-5-mediated production of pro-inflammatory cytokines. The functional characterization of the novel IRF-5 mutant in transformed B and T cell lines and in ATL and CLL patients may lead to a better understanding of the role of these transcriptional regulators in hematopoietic malignancies

    TRAF6 Autoubiquitination-Independent Activation of the NFκB and MAPK Pathways in Response to IL-1 and RANKL

    Get PDF
    The adapter protein TRAF6 is critical for mediating signal transduction from members of the IL-1R/TLR and TNFR superfamilies. The TRAF6 RING finger domain functions as an ubiquitin E3 ligase capable of generating non-degradative K63-linked ubiquitin chains. It is believed that these chains serve as docking sites for formation of signaling complexes, and that K63-linked autoubiquitination of TRAF6 is essential for formation and activation of a complex involving the kinase TAK1 and its adapters, TAB1 and TAB2. In order to assess independently the E3 ligase and ubiquitin substrate functions of TRAF6, we generated, respectively, RING domain and complete lysine-deficient TRAF6 mutants. We found that while the TRAF6 RING domain is required for activation of TAK1, it is dispensable for interaction between TRAF6 and the TAK1-TAB1-TAB2 complex. Likewise, lysine-deficient TRAF6 was found to interact with the TAK1-TAB1-TAB2 complex, but surprisingly was also found to be fully competent to activate TAK1, as well as NFκB and AP-1 reporters. Furthermore, lysine-deficient TRAF6 rescued IL-1-mediated NFκB and MAPK activation, as well as IL-6 elaboration in retrovirally-rescued TRAF6-deficient fibroblasts. Lysine-deficient TRAF6 also rescued RANKL-mediated NFκB and MAPK activation, and osteoclastogenesis in retrovirally-rescued TRAF6-deficient bone marrow macrophages. While incapable of being ubiquitinated itself, we demonstrate that lysine-deficient TRAF6 remains competent to induce ubiquitination of IKKγ/NEMO. Further, this NEMO modification contributes to TRAF6-mediated activation of NFκB. Collectively, our results suggest that while TRAF6 autoubiquitination may serve as a marker of activation, it is unlikely to underpin RING finger-dependent TRAF6 function

    Voltage Gated Calcium Channels Negatively Regulate Protective Immunity to Mycobacterium tuberculosis

    Get PDF
    Mycobacterium tuberculosis modulates levels and activity of key intracellular second messengers to evade protective immune responses. Calcium release from voltage gated calcium channels (VGCC) regulates immune responses to pathogens. In this study, we investigated the roles of VGCC in regulating protective immunity to mycobacteria in vitro and in vivo. Inhibiting L-type or R-type VGCC in dendritic cells (DCs) either using antibodies or by siRNA increased calcium influx in an inositol 1,4,5-phosphate and calcium release calcium activated channel dependent mechanism that resulted in increased expression of genes favoring pro-inflammatory responses. Further, VGCC-blocked DCs activated T cells that in turn mediated killing of M. tuberculosis inside macrophages. Likewise, inhibiting VGCC in infected macrophages and PBMCs induced calcium influx, upregulated the expression of pro-inflammatory genes and resulted in enhanced killing of intracellular M. tuberculosis. Importantly, compared to healthy controls, PBMCs of tuberculosis patients expressed higher levels of both VGCC, which were significantly reduced following chemotherapy. Finally, blocking VGCC in vivo in M. tuberculosis infected mice using specific antibodies increased intracellular calcium and significantly reduced bacterial loads. These results indicate that L-type and R-type VGCC play a negative role in M. tuberculosis infection by regulating calcium mobilization in cells that determine protective immunity

    Protective Immunity to Mycobacterium tuberculosis Infection by Chemokine and Cytokine Conditioned CFP-10 Differentiated Dendritic Cells

    Get PDF
    BACKGROUND: Dendritic cells (DCs) play major roles in mediating immune responses to mycobacteria. A crucial aspect of this is the priming of T cells via chemokines and cytokines. In this study we investigated the roles of chemokines RANTES and IP-10 in regulating protective responses from Mycobacterium tuberculosis (M. tb) 10 kDa Culture Filtrate Protein-10 (CFP-10) differentiated DCs (CFP10-DCs). METHODS AND FINDINGS: Infection of CFP10-DCs with mycobacteria down-modulated RANTES and IP-10 levels. Pathway specific microarray analyses showed that in addition to RANTES and IP-10, mycobacteria infected CFP10-DCs showed reduced expression of many Th1 promoting chemokines and chemokine receptors. Importantly, T cells co-cultured with RANTES and IP-10 conditioned CFP10-DCs mediated killing of mycobacteria from infected macrophages. Similarly, T cells recruited by RANTES and IP-10 conditioned CFP10-DCs mediated significant killing of mycobacteria from infected macrophages. IFN-gamma treatment of CFP10-DCs restored RANTES and IP-10 levels and T cells activated by these DCs mediated significant killing of virulent M. tb inside macrophages. Adoptive transfer of either RANTES and IP-10 or IL-12 and IFN-gamma conditioned CFP10-DCs cleared an established M. tb infection in mice. The extent of clearance was similar to that obtained with drug treatment. CONCLUSIONS: These results indicate that chemokine and cytokine secretion by DCs differentiated by M. tb antigens such as CFP-10 play major roles in regulating protective immune responses at sites of infection
    corecore