220 research outputs found

    First anatomical network analysis of fore- and hindlimb musculoskeletal modularity in bonobos, common chimpanzees, and humans

    Get PDF
    Studies of morphological integration and modularity, and of anatomical complexity in human evolution typically focus on skeletal tissues. Here we provide the first network analysis of the musculoskeletal anatomy of both the fore- and hindlimbs of the two species of chimpanzee and humans. Contra long-accepted ideas, network analysis reveals that the hindlimb displays a pattern opposite to that of the forelimb: Pan big toe is typically seen as more independently mobile, but humans are actually the ones that have a separate module exclusively related to its movements. Different fore- vs hindlimb patterns are also seen for anatomical network complexity (i.e., complexity in the arrangement of bones and muscles). For instance, the human hindlimb is as complex as that of chimpanzees but the human forelimb is less complex than in Pan. Importantly, in contrast to the analysis of morphological integration using morphometric approaches, network analyses do not support the prediction that forelimb and hindlimb are more dissimilar in species with functionally divergent limbs such as bipedal humans

    The discovery of a five-image lensed quasar at z = 3.34 using PanSTARRS1 and Gaia

    Get PDF
    We report the discovery, spectroscopic confirmation, and mass modelling of the gravitationally lensed quasar system PS J0630-1201. The lens was discovered by matching a photometric quasar catalogue compiled from Pan-STARRS and WISE photometry to the Gaia DR1 catalogue, exploiting the high spatial resolution of the latter (FWHM ∼\sim 0.1") to identify the three brightest components of the lens. Follow-up spectroscopic observations with the WHT confirm the multiple objects are quasars at redshift zq=3.34z_{q}=3.34. Further follow-up with Keck AO high-resolution imaging reveals that the system is composed of two lensing galaxies and the quasar is lensed into a ∼\sim2.8" separation four-image cusp configuration with a fifth image clearly visible, and a 1.0" arc due to the lensed quasar host galaxy. The system is well-modelled with two singular isothermal ellipsoids, reproducing the position of the fifth image. We discuss future prospects for measuring time delays between the images and constraining any offset between mass and light using the faintly detected Einstein arcs associated with the quasar host galaxy

    Mitochondrial Cox1 Sequence Data Reliably Uncover Patterns of Insect Diversity But Suffer from High Lineage-Idiosyncratic Error Rates

    Get PDF
    The demand for scientific biodiversity data is increasing, but taxonomic expertise is often limited or not available. DNA sequencing is a potential remedy to overcome this taxonomic impediment. Mitochondrial DNA is most commonly used, e.g., for species identification ("DNA barcoding"). Here, we present the first study in arthropods based on a near-complete species sampling of a family-level taxon from the entire Australian region. We aimed to assess how reliably mtDNA data can capture species diversity when many sister species pairs are included. Then, we contrasted phylogenetic subsampling with the hitherto more commonly applied geographical subsampling, where sister species are not necessarily captured. We sequenced 800 bp cox1 for 1,439 individuals including 260 Australian species (78% species coverage). We used clustering with thresholds of 1 to 10% and general mixed Yule Coalescent (GMYC) analysis for the estimation of species richness. The performance metrics used were taxonomic accuracy and agreement between the morphological and molecular species richness estimation. Clustering (at the 3% level) and GMYC reliably estimated species diversity for single or multiple geographic regions, with an error for larger clades of lower than 10%, thus outperforming parataxonomy. However, the rates of error were higher for some individual genera, with values of up to 45% when very recent species formed nonmonophyletic clusters. Taxonomic accuracy was always lower, with error rates above 20% and a larger variation at the genus level (0 to 70%). Sørensen similarity indices calculated for morphospecies, 3% clusters and GMYC entities for different pairs of localities was consistent among methods and showed expected decrease over distance. Cox1 sequence data are a powerful tool for large-scale species richness estimation, with a great potential for use in ecology and β-diversity studies and for setting conservation priorities. However, error rates can be high in individual lineages

    Satisfaction with Life Scale among adolescents and young adults in Portugal: extending evidence of construct validity

    Get PDF
    The paper presents three empirical studies designed to extend the test of the construct validity of the Satisfaction With Life Scale (SWLS) among Portuguese students. In the first study, the responses of 461 elementary and secondary education students were submitted to a principal component analysis. A solution of one single factor was chosen, accounting for 55.7 % of the total variance, with Cronbach alpha coefficient and inter-item correlation above .70 and .20, respectively. The second study used a sample of 317 undergraduate students and registered a similar factor solution for SWLS (/pq = 0.99), which accounted for 65.6 % of the total variance (Cronbach alpha .89 and inter-item correlation above .20). A test–retest analysis registered coefficients of .70 (T2) and .77 (T3) and no significant statistically differences between T2, T3 and T1. The third study used a sample of 107 foster care youths from elementary and secondary education. Confirmatory factor analysis results indicate adequate fit indexes for the one-factor solution (v2/df = 2.70, GFI = .96, CFI = .96), which showed convergent validity, reliability and homogeneity. In conclusion, there is psychometric evidence for the one-factor structure of the SWLS in Portugal.FCTCOMPET

    Protein loop compaction and the origin of the effect of arginine and glutamic acid mixtures on solubility, stability and transient oligomerization of proteins

    Get PDF
    Addition of a 50 mM mixture of l-arginine and l-glutamic acid (RE) is extensively used to improve protein solubility and stability, although the origin of the effect is not well understood. We present Small Angle X-ray Scattering (SAXS) and Nuclear Magnetic Resonance (NMR) results showing that RE induces protein compaction by collapsing flexible loops on the protein core. This is suggested to be a general mechanism preventing aggregation and improving resistance to proteases and to originate from the polyelectrolyte nature of RE. Molecular polyelectrolyte mixtures are expected to display long range correlation effects according to dressed interaction site theory. We hypothesize that perturbation of the RE solution by dissolved proteins is proportional to the volume occupied by the protein. As a consequence, loop collapse, minimizing the effective protein volume, is favored in the presence of RE

    Macular hole formation, progression, and surgical repair: case series of serial optical coherence tomography and time lapse morphing video study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To use a new medium to dynamically visualize serial optical coherence tomography (OCT) scans in order to illustrate and elucidate the pathogenesis of idiopathic macular hole formation, progression, and surgical closure.</p> <p>Case Presentations</p> <p>Two patients at the onset of symptoms with early stage macular holes and one patient following repair were followed with serial OCTs. Images centered at the fovea and at the same orientation were digitally exported and morphed into an Audiovisual Interleaving (avi) movie format. Morphing videos from serial OCTs allowed the OCTs to be viewed dynamically. The videos supported anterior-posterior vitreofoveal traction as the initial event in macular hole formation. Progression of the macular hole occurred with increased cystic thickening of the fovea without evidence of further vitreofoveal traction. During cyst formation, the macular hole enlarged as the edges of the hole became elevated from the retinal pigment epithelium (RPE) with an increase in subretinal fluid. Surgical repair of a macular hole revealed initial closure of the macular hole with subsequent reabsorption of the sub-retinal fluid and restoration of the foveal contour.</p> <p>Conclusions</p> <p>Morphing videos from serial OCTs are a useful tool and helped illustrate and support anterior-posterior vitreofoveal traction with subsequent retinal hydration as the pathogenesis of idiopathic macular holes.</p

    Farseer-NMR: automatic treatment, analysis and plotting of large, multi-variable NMR data

    Get PDF
    We present Farseer-NMR (https://git.io/vAueU), a software package to treat, evaluate and combine NMR spectroscopic data from sets of protein-derived peaklists covering a range of experimental conditions. The combined advances in NMR and molecular biology enable the study of complex biomolecular systems such as flexible proteins or large multibody complexes, which display a strong and functionally relevant response to their environmental conditions, e.g. the presence of ligands, site-directed mutations, post translational modifications, molecular crowders or the chemical composition of the solution. These advances have created a growing need to analyse those systems’ responses to multiple variables. The combined analysis of NMR peaklists from large and multivariable datasets has become a new bottleneck in the NMR analysis pipeline, whereby information-rich NMR-derived parameters have to be manually generated, which can be tedious, repetitive and prone to human error, or even unfeasible for very large datasets. There is a persistent gap in the development and distribution of software focused on peaklist treatment, analysis and representation, and specifically able to handle large multivariable datasets, which are becoming more commonplace. In this regard, Farseer-NMR aims to close this longstanding gap in the automated NMR user pipeline and, altogether, reduce the time burden of analysis of large sets of peaklists from days/weeks to seconds/minutes. We have implemented some of the most common, as well as new, routines for calculation of NMR parameters and several publication-quality plotting templates to improve NMR data representation. Farseer-NMR has been written entirely in Python and its modular code base enables facile extension

    Information Routing Driven by Background Chatter in a Signaling Network

    Get PDF
    Living systems are capable of processing multiple sources of information simultaneously. This is true even at the cellular level, where not only coexisting signals stimulate the cell, but also the presence of fluctuating conditions is significant. When information is received by a cell signaling network via one specific input, the existence of other stimuli can provide a background activity –or chatter– that may affect signal transmission through the network and, therefore, the response of the cell. Here we study the modulation of information processing by chatter in the signaling network of a human cell, specifically, in a Boolean model of the signal transduction network of a fibroblast. We observe that the level of external chatter shapes the response of the system to information carrying signals in a nontrivial manner, modulates the activity levels of the network outputs, and effectively determines the paths of information flow. Our results show that the interactions and node dynamics, far from being random, confer versatility to the signaling network and allow transitions between different information-processing scenarios

    The Crystal Structure and RNA-Binding of an Orthomyxovirus Nucleoprotein

    Get PDF
    Genome packaging for viruses with segmented genomes is often a complex problem. This is particularly true for influenza viruses and other orthomyxoviruses, whose genome consists of multiple negative-sense RNAs encapsidated as ribonucleoprotein (RNP) complexes. To better understand the structural features of orthomyxovirus RNPs that allow them to be packaged, we determined the crystal structure of the nucleoprotein (NP) of a fish orthomyxovirus, the infectious salmon anemia virus (ISAV) (genus Isavirus). As the major protein component of the RNPs, ISAV-NP possesses a bi-lobular structure similar to the influenza virus NP. Because both RNA-free and RNA-bound ISAV NP forms stable dimers in solution, we were able to measure the NP RNA binding affinity as well as the stoichiometry using recombinant proteins and synthetic oligos. Our RNA binding analysis revealed that each ISAV-NP binds ,12 nts of RNA, shorter than the 24ï¾–28 nts originally estimated for the influenza A virus NP based on population average. The 12-nt stoichiometry was further confirmed by results from electron microscopy and dynamic light scattering. Considering that RNPs of ISAV and the influenza viruses have similar morphologies and dimensions, our findings suggest that NP-free RNA may exist on orthomyxovirus RNPs, and selective RNP packaging may be accomplished through direct RNA-RNA interactions
    • …
    corecore