92 research outputs found

    A meta-analysis of pharmacotherapy for social anxiety disorder: an examination of efficacy, moderators, and mediators

    Full text link
    INTRODUCTION: Social anxiety disorder (SAD) is among the most prevalent mental disorders, associated with impaired functioning and poor quality of life. Pharmacotherapy is the most widely utilized treatment option. The current study provides an updated meta-analytic review of the efficacy of pharmacotherapy and examines moderators and mediators of treatment efficacy. Areas Covered: A comprehensive search of the current literature yielded 52 randomized, pill placebo-controlled trials of pharmacotherapy for adults diagnosed with SAD. Data on potential mediators of treatment outcome were collected, as well as data necessary to calculate pooled correlation matrices to compute indirect effects. Expert Opinion: The overall effect size of pharmacotherapy for SAD is small to medium (Hedges' g = 0.41). Effect sizes were not moderated by age, sex, length of treatment, initial severity, risk of study bias, or publication year. Furthermore, reductions in symptoms mediated pharmacotherapy's effect on quality of life. Support was found for reverse mediation. Future directions may include sustained efforts to examine treatment mechanisms of pharmacotherapy using rigorous longitudinal methodology to better establish temporal precedence

    A picogram and nanometer scale photonic crystal opto-mechanical cavity

    Get PDF
    We describe the design, fabrication, and measurement of a cavity opto-mechanical system consisting of two nanobeams of silicon nitride in the near-field of each other, forming a so-called "zipper" cavity. A photonic crystal patterning is applied to the nanobeams to localize optical and mechanical energy to the same cubic-micron-scale volume. The picrogram-scale mass of the structure, along with the strong per-photon optical gradient force, results in a giant optical spring effect. In addition, a novel damping regime is explored in which the small heat capacity of the zipper cavity results in blue-detuned opto-mechanical damping.Comment: 15 pages, 4 figure

    Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses

    Get PDF
    Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response

    Disruption of tuftelin 1, a desmosome associated protein, causes skin fragility, woolly hair and palmoplantar keratoderma

    Get PDF
    Desmosomes are dynamic complex protein structures involved in cellular adhesion. Disruption of these structures by loss of function variants in desmosomal genes lead to a variety of skin and heart related phenotypes. Here, we report tuftelin 1 as a desmosome-associated protein, implicated in epidermal integrity. In two siblings with mild skin fragility, woolly hair and mild palmoplantar keratoderma, but without a cardiac phenotype, we identified a homozygous splice site variant in the TUFT1 gene, leading to aberrant mRNA splicing and loss of tuftelin 1 protein. Patients' skin and keratinocytes showed acantholysis, perinuclear retraction of intermediate filaments, and reduced mechanical stress resistance. Immunolabeling and transfection studies showed that tuftelin 1 is positioned within the desmosome and its location dependent on the presence of the desmoplakin carboxy-terminal tail. A Tuft1 knock-out mouse model mimicked the patients' phenotypes. Altogether, this study reveals tuftelin 1 as a desmosome-associated protein, whose absence causes skin fragility, woolly hair and palmoplantar keratoderma

    A Large Scale shRNA Barcode Screen Identifies the Circadian Clock Component ARNTL as Putative Regulator of the p53 Tumor Suppressor Pathway

    Get PDF
    BACKGROUND: The p53 tumor suppressor gene is mutated in about half of human cancers, but the p53 pathway is thought to be functionally inactivated in the vast majority of cancer. Understanding how tumor cells can become insensitive to p53 activation is therefore of major importance. Using an RNAi-based genetic screen, we have identified three novel genes that regulate p53 function. RESULTS: We have screened the NKI shRNA library targeting 8,000 human genes to identify modulators of p53 function. Using the shRNA barcode technique we were able to quickly identify active shRNA vectors from a complex mixture. Validation of the screening results indicates that the shRNA barcode technique can reliable identify active shRNA vectors from a complex pool. Using this approach we have identified three genes, ARNTL, RBCK1 and TNIP1, previously unknown to regulate p53 function. Importantly, ARNTL (BMAL1) is an established component of the circadian regulatory network. The latter finding adds to recent observations that link circadian rhythm to the cell cycle and cancer. We show that cells having suppressed ARNTL are unable to arrest upon p53 activation associated with an inability to activate the p53 target gene p21(CIP1). CONCLUSIONS: We identified three new regulators of the p53 pathway through a functional genetic screen. The identification of the circadian core component ARNTL strengthens the link between circadian rhythm and cancer
    corecore