13 research outputs found
Recommended from our members
The Use of Simulation for the Design and Analysis of Thermophotovoltaic Networks
Simulation has provided valuable quantification of the fundamental behavior of thermophotovoltaic cell networks. The results of simulation studies have supported the design and fabrication of small-scale demonstration networks and are expected to guide assembly of large-scale systems. This paper describes the methodology and software simulator developed to address issues in thermophotovoltaic (TPV) networking, including failure analysis, electrical network design, and nonuniform illumination. Results from simulation studies are given illustrating their application to the design and fabrication of small-scale TPV arrays
Recommended from our members
Analysis of TPV Network Losses (a Presentation)
This talk focuses on the theoretical analysis of electrical losses associated with electrically networking large numbers of TPV cells to produce high power TPV power generators
Ge quantum dot arrays grown by ultrahigh vacuum molecular beam epitaxy on the Si(001) surface: nucleation, morphology and CMOS compatibility
Issues of morphology, nucleation and growth of Ge cluster arrays deposited by
ultrahigh vacuum molecular beam epitaxy on the Si(001) surface are considered.
Difference in nucleation of quantum dots during Ge deposition at low (<600 deg
C) and high (>600 deg. C) temperatures is studied by high resolution scanning
tunneling microscopy. The atomic models of growth of both species of Ge
huts---pyramids and wedges---are proposed. The growth cycle of Ge QD arrays at
low temperatures is explored. A problem of lowering of the array formation
temperature is discussed with the focus on CMOS compatibility of the entire
process; a special attention is paid upon approaches to reduction of treatment
temperature during the Si(001) surface pre-growth cleaning, which is at once a
key and the highest-temperature phase of the Ge/Si(001) quantum dot dense array
formation process. The temperature of the Si clean surface preparation, the
final high-temperature step of which is, as a rule, carried out directly in the
MBE chamber just before the structure deposition, determines the compatibility
of formation process of Ge-QD-array based devices with the CMOS manufacturing
cycle. Silicon surface hydrogenation at the final stage of its wet chemical
etching during the preliminary cleaning is proposed as a possible way of
efficient reduction of the Si wafer pre-growth annealing temperature.Comment: 30 pages, 11 figure
Surface Morphology Transformation Under High-Temperature Annealing of Ge Layers Deposited on Si(100)
âSqueezingâ near-field thermal emission for ultra-efficient high-power thermophotovoltaic conversion
We numerically demonstrate near-field planar ThermoPhotoVoltaic systems with very high efficiency and output power, at large vacuum gaps. Example performances include: at 1200â°K emitter temperature, output power density 2âW/cm[superscript 2] with ~47% efficiency at 300ânm vacuum gap; at 2100â°K, 24âW/cm[superscript 2] with ~57% efficiency at 200ânm gap; and, at 3000â°K, 115âW/cm[superscript 2] with ~61% efficiency at 140ânm gap. Key to this striking performance is a novel photonic design forcing the emitter and cell single modes to cros resonantly couple and impedance-match just above the semiconductor bandgap, creating there a âsqueezedâ narrowband near-field emission spectrum. Specifically, we employ surface-plasmon-polariton thermal emitters and silver-backed semiconductor-thin-film photovoltaic cells. The emitter planar plasmonic nature allows for high-power and stable high-temperature operation. Our simulations include modeling of free-carrier absorption in both cell electrodes and temperature dependence of the emitter properties. At high temperatures, the efficiency enhancement via resonant mode cross-coupling and matching can be extended to even higher power, by appropriately patterning the silver back electrode to enforce also an absorber effective surface-plasmon-polariton mode. Our proposed designs can therefore lead the way for mass-producible and low-cost ThermoPhotoVoltaic micro-generators and solar cells.Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-13-D-0001