1,556 research outputs found
Deriving a mutation index of carcinogenicity using protein structure and protein interfaces
With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/
Attitudes and expectations of patients with advanced cancer towards community palliative care service in Hong Kong
Conference Theme: Happy Staff - Healthy People (開心員工 - 共建民康)published_or_final_versionThe 2010 Hospital Authority Convention, Hong Kong, 10-11 May 2010
Institutional distance and foreign subsidiary performance in emerging markets: moderating effects of ownership strategy and host-country experience
Institutional distance has been known to be an important driver of Multinational Enterprises’ strategies and performance in host countries. Based on a large panel dataset of 10562 firms operating in 17 emerging markets and spanning 80 home countries, we re-examine the relationship described by Gaur and Lu (2007) between regulatory institutional distance and subsidiary performance. We extend this research by (1) examining this relationship in the context of emerging markets, (2) examining the moderating effects of ownership strategy and host-country experience within the context of emerging markets and (3) accounting for a greater variety of institutions by including a large number of home and host countries. We find that institutional distance negatively affects subsidiary performance in emerging markets. Our findings also show that the negative effects of institutional distance on subsidiary performance are lesser for subsidiaries with partial ownership (than for subsidiaries with full ownership) and for subsidiaries with greater host-country experience. We discuss our findings with respect to Gaur and Lu’s model, which explores the relationships between these variables in a general context
Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity
Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria
Airflow Dynamics of Human Jets: Sneezing and Breathing - Potential Sources of Infectious Aerosols
10.1371/journal.pone.0059970PLoS ONE84
Prospective study on the mismatch concept in acute stroke patients within the first 24 h after symptom onset - 1000Plus study
<p>Abstract</p> <p>Background</p> <p>The mismatch between diffusion weighted imaging (DWI) lesion and perfusion imaging (PI) deficit volumes has been used as a surrogate of ischemic penumbra. This pathophysiology-orientated patient selection criterion for acute stroke treatment may have the potential to replace a fixed time window. Two recent trials - DEFUSE and EPITHET - investigated the mismatch concept in a multicenter prospective approach. Both studies randomized highly selected patients (n = 74/n = 100) and therefore confirmation in a large consecutive cohort is desirable. We here present a single-center approach with a 3T MR tomograph next door to the stroke unit, serving as a bridge from the ER to the stroke unit to screen all TIA and stroke patients. Our primary hypothesis is that the prognostic value of the mismatch concept is depending on the vessel status. Primary endpoint of the study is infarct growth determined by imaging, secondary endpoints are neurological deficit on day 5-7 and functional outcome after 3 months.</p> <p>Methods and design</p> <p>1000Plus is a prospective, single centre observational study with 1200 patients to be recruited. All patients admitted to the ER with the clinical diagnosis of an acute cerebrovascular event within 24 hours after symptom onset are screened. Examinations are performed on day 1, 2 and 5-7 with neurological examination including National Institute of Health Stroke Scale (NIHSS) scoring and stroke MRI including T2*, DWI, TOF-MRA, FLAIR and PI. PI is conducted as dynamic susceptibility-enhanced contrast imaging with a fixed dosage of 5 ml 1 M Gadobutrol. For post-processing of PI, mean transit time (MTT) parametric images are determined by deconvolution of the arterial input function (AIF) which is automatically identified. Lesion volumes and mismatch are measured and calculated by using the perfusion mismatch analyzer (PMA) software from ASIST-Japan. Primary endpoint is the change of infarct size between baseline examination and day 5-7 follow up.</p> <p>Discussions</p> <p>The aim of this study is to describe the incidence of mismatch and the predictive value of PI for final lesion size and functional outcome depending on delay of imaging and vascular recanalization. It is crucial to standardize PI for future randomized clinical trials as for individual therapeutic decisions and we expect to contribute to this challenging task.</p> <p>Trial Registration</p> <p>clinicaltrials.gov NCT00715533</p
Extreme genetic fragility of the HIV-1 capsid
Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies
Emergence of the rtA181T/sW172* mutant increased the risk of hepatoma occurrence in patients with lamivudine-resistant chronic hepatitis B
<p>Abstract</p> <p>Background</p> <p>Development of the hepatitis B virus (HBV) rtA181T/sW172* mutant could occur during prolonged lamivudine (LAM) therapy, conferring cross resistance to adefovir. Recent studies demonstrated an increased oncogenic potential of this mutant in NIH3T3 cells. In this study, we aimed to investigate the clinical significance of this finding.</p> <p>Methods</p> <p>Serum samples from 123 LAM-resistant chronic hepatitis B patients were submitted for virological assays. A highly sensitive amplification created restriction enzyme site (ACRES) method was devised to detect small amounts of the rtA181T mutant in the serum. Virological factors including HBV-DNA level, genotype, precore G1896A, BCP A1762T/G1764A, rtM204I/V, rtA181T and pre-S internal deletion mutations as well as clinical variables including subsequent use of rescue drugs were submitted for outcome analysis.</p> <p>Results</p> <p>By use of the highly sensitive ACRES method, the rtA181T mutant was detectable in 10 of the 123 LAM-resistant patients. During the mean follow-up period of 26.2 ± 16.4 months (range 2 to 108 months), 3 of the 10 (30.0%) rtA181T-positive patients and 2 of the 113 (1.8%) rtA181T-negative patients developed hepatocellular carcinoma (HCC). Kaplan-Meier analysis indicated that the presence of rtA181T mutation (P < 0.001), age > 50 years (P = 0.001), and liver cirrhosis (P < 0.001) were significantly associated with subsequent occurrence of HCC. All 5 HCC patients belonged to the older age and cirrhosis groups.</p> <p>Conclusions</p> <p>Emergence of the rtA181T/sW172* mutant in LAM-resistant patients increased the risk of HCC development in the subsequent courses of antiviral therapy.</p
- …