1,160 research outputs found
Sister Mary Joseph's Nodule at a University Teaching Hospital in Northwestern Tanzania: A Retrospective Review of 34 cases.
Sister Mary Joseph's nodule is a metastatic tumor deposit in the umbilicus and often represents advanced intra-abdominal malignancy with dismal prognosis. There is a paucity of published data on this subject in our setting. This study was conducted to describe the clinicopathological presentation and treatment outcome of this condition in our environment and highlight challenges associated with the care of these patients, and to proffer solutions for improved outcome. This was a retrospective study of histologically confirmed cases of Sister Mary Joseph's nodule seen at Bugando Medical Centre between March 2003 and February 2013. Data collected were analyzed using descriptive statistics. A total of 34 patients were enrolled in the study. Males outnumbered females by a ratio of 1.4:1. The vast majority of patients (70.6%) presented with large umbilical nodule > 2 cm in size. The stomach (41.1%) was the most common location of the primary tumor. Adenocarcinoma (88.2%) was the most frequent histopathological type. Most of the primary tumors (52.9%) were poorly differentiated. As the disease was advanced and metastatic in all patients, only palliative therapy was offered. Out of 34 patients, 11 patients died in the hospital giving a mortality rate of 32.4%. Patients were followed up for 24 months. At the end of the follow-up period, 14(60.9%) patients were lost to follow-up and the remaining 9 (39.1%) patients died. Patients survived for a median period of 28 weeks (range, 2 to 64 weeks). The nodule recurred in 6 (26.1%) patients after complete excision. Sister Mary Joseph's nodule of the umbilicus is not rare in our environment and often represents manifestation of a variety of advanced intra-abdominal malignancies. The majority of the patients present at a late stage and many with distant metastases. The patient's survival is very short leading to a poor outcome. Early detection of primary cancer at an early stage may improve the prognosis
Species-specific differences in the Pro-Ala rich region of cardiac myosin binding protein-C
Cardiac myosin binding protein-C (cMyBP-C) is an accessory protein found in the A-bands of vertebrate sarcomeres and mutations in the cMyBP-C gene are a leading cause of familial hypertrophic cardiomyopathy. The regulatory functions of cMyBP-C have been attributed to the N-terminus of the protein, which is composed of tandem immunoglobulin (Ig)-like domains (C0, C1, and C2), a region rich in proline and alanine residues (the Pro-Ala rich region) that links C0 and C1, and a unique sequence referred to as the MyBP-C motif, or M-domain, that links C1 and C2. Recombinant proteins that contain various combinations of the N-terminal domains of cMyBP-C can activate actomyosin interactions in the absence of Ca2+, but the specific sequences required for these effects differ between species; the Pro-Ala region has been implicated in human cMyBP-C whereas the C1 and M-domains appear important in mouse cMyBP-C. To investigate whether species-specific differences in sequence can account for the observed differences in function, we compared sequences of the Pro-Ala rich region in cMyBP-C isoforms from different species. Here we report that the number of proline and alanine residues in the Pro-Ala rich region varies significantly between different species and that the number correlates directly with mammalian body size and inversely with heart rate. Thus, systematic sequence differences in the Pro-Ala rich region of cMyBP-C may contribute to observed functional differences in human versus mouse cMyBP-C isoforms and suggest that the Pro-Ala region may be important in matching contractile speed to cardiac function across species
Vitamin D supplementation and breast cancer prevention : a systematic review and meta-analysis of randomized clinical trials
In recent years, the scientific evidence linking vitamin D status or supplementation to breast cancer has grown notably. To investigate the role of vitamin D supplementation on breast cancer incidence, we conducted a systematic review and meta-analysis of randomized controlled trials comparing vitamin D with placebo or no treatment. We used OVID to search MEDLINE (R), EMBASE and CENTRAL until April 2012. We screened the reference lists of included studies and used the “Related Article” feature in PubMed to identify additional articles. No language restrictions were applied. Two reviewers independently extracted data on methodological quality, participants, intervention, comparison and outcomes. Risk Ratios and 95% Confident Intervals for breast cancer were pooled using a random-effects model. Heterogeneity was assessed using the I2 test. In sensitivity analysis, we assessed the impact of vitamin D dosage and mode of administration on treatment effects. Only two randomized controlled trials fulfilled the pre-set inclusion criteria. The pooled analysis included 5372 postmenopausal women. Overall, Risk Ratios and 95% Confident Intervals were 1.11 and 0.74–1.68. We found no evidence of heterogeneity. Neither vitamin D dosage nor mode of administration significantly affected breast cancer risk. However, treatment efficacy was somewhat greater when vitamin D was administered at the highest dosage and in combination with calcium (Risk Ratio 0.58, 95% Confident Interval 0.23–1.47 and Risk Ratio 0.93, 95% Confident Interval 0.54–1.60, respectively). In conclusions, vitamin D use seems not to be associated with a reduced risk of breast cancer development in postmenopausal women. However, the available evidence is still limited and inadequate to draw firm conclusions. Study protocol code: FARM8L2B5L
Nucleocytoplasmic transport: a thermodynamic mechanism
The nuclear pore supports molecular communication between cytoplasm and
nucleus in eukaryotic cells. Selective transport of proteins is mediated by
soluble receptors, whose regulation by the small GTPase Ran leads to cargo
accumulation in, or depletion from the nucleus, i.e., nuclear import or nuclear
export. We consider the operation of this transport system by a combined
analytical and experimental approach. Provocative predictions of a simple model
were tested using cell-free nuclei reconstituted in Xenopus egg extract, a
system well suited to quantitative studies. We found that accumulation capacity
is limited, so that introduction of one import cargo leads to egress of
another. Clearly, the pore per se does not determine transport directionality.
Moreover, different cargo reach a similar ratio of nuclear to cytoplasmic
concentration in steady-state. The model shows that this ratio should in fact
be independent of the receptor-cargo affinity, though kinetics may be strongly
influenced. Numerical conservation of the system components highlights a
conflict between the observations and the popular concept of transport cycles.
We suggest that chemical partitioning provides a framework to understand the
capacity to generate concentration gradients by equilibration of the
receptor-cargo intermediary.Comment: in press at HFSP Journal, vol 3 16 text pages, 1 table, 4 figures,
plus Supplementary Material include
Network adaptation improves temporal representation of naturalistic stimuli in drosophila eye: II Mechanisms
Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information
Bystander responses to a violent incident in an immersive virtual environment
Under what conditions will a bystander intervene to try to stop a violent attack by one person on another? It is generally believed that the greater the size of the crowd of bystanders, the less the chance that any of them will intervene. A complementary model is that social identity is critical as an explanatory variable. For example, when the bystander shares common social identity with the victim the probability of intervention is enhanced, other things being equal. However, it is generally not possible to study such hypotheses experimentally for practical and ethical reasons. Here we show that an experiment that depicts a violent incident at life-size in immersive virtual reality lends support to the social identity explanation. 40 male supporters of Arsenal Football Club in England were recruited for a two-factor between-groups experiment: the victim was either an Arsenal supporter or not (in-group/out-group), and looked towards the participant for help or not during the confrontation. The response variables were the numbers of verbal and physical interventions by the participant during the violent argument. The number of physical interventions had a significantly greater mean in the ingroup condition compared to the out-group. The more that participants perceived that the Victim was looking to them for help the greater the number of interventions in the in-group but not in the out-group. These results are supported by standard statistical analysis of variance, with more detailed findings obtained by a symbolic regression procedure based on genetic programming. Verbal interventions made during their experience, and analysis of post-experiment interview data suggest that in-group members were more prone to confrontational intervention compared to the out-group who were more prone to make statements to try to diffuse the situation
Insulin Promotes Glycogen Storage and Cell Proliferation in Primary Human Astrocytes
In the human brain, there are at least as many astrocytes as neurons. Astrocytes are known to modulate neuronal function in several ways. Thus, they may also contribute to cerebral insulin actions. Therefore, we examined whether primary human astrocytes are insulin-responsive and whether their metabolic functions are affected by the hormone.Commercially available Normal Human Astrocytes were grown in the recommended medium. Major players in the insulin signaling pathway were detected by real-time RT-PCR and Western blotting. Phosphorylation events were detected by phospho-specific antibodies. Glucose uptake and glycogen synthesis were assessed using radio-labeled glucose. Glycogen content was assessed by histochemistry. Lactate levels were measured enzymatically. Cell proliferation was assessed by WST-1 assay.We detected expression of key proteins for insulin signaling, such as insulin receptor β-subunit, insulin receptor substrat-1, Akt/protein kinase B and glycogen synthase kinase 3, in human astrocytes. Akt was phosphorylated and PI-3 kinase activity increased following insulin stimulation in a dose-dependent manner. Neither increased glucose uptake nor lactate secretion after insulin stimulation could be evidenced in this cell type. However, we found increased insulin-dependent glucose incorporation into glycogen. Furthermore, cell numbers increased dose-dependently upon insulin treatment.This study demonstrated that human astrocytes are insulin-responsive at the molecular level. We identified glycogen synthesis and cell proliferation as biological responses of insulin signaling in these brain cells. Hence, this cell type may contribute to the effects of insulin in the human brain
Differentiation of human multipotent dermal fibroblasts into islet-like cell clusters
<p>Abstract</p> <p>Background</p> <p>We have previously obtained a clonal population of cells from human foreskin that is able to differentiate into mesodermal, ectodermal and endodermal progenies. It is of great interest to know whether these cells could be further differentiated into functional insulin-producing cells.</p> <p>Results</p> <p>Sixty-one single-cell-derived dermal fibroblast clones were established from human foreskin by limiting dilution culture. Of these, two clones could be differentiated into neuron-, adipocyte- or hepatocyte-like cells under certain culture conditions. In addition, those two clones were able to differentiate into islet-like clusters under pancreatic induction. Insulin, glucagon and somatostatin were detectable at the mRNA and protein levels after induction. Moreover, the islet-like clusters could release insulin in response to glucose in vitro.</p> <p>Conclusions</p> <p>This is the first study to demonstrate that dermal fibroblasts can differentiate into insulin-producing cells without genetic manipulation. This may offer a safer cell source for future stem cell-based therapies.</p
- …