191 research outputs found

    Thermodynamic Properties of Holographic Multiquark and the Multiquark Star

    Full text link
    We study thermodynamic properties of the multiquark nuclear matter. The dependence of the equation of state on the colour charges is explored both analytically and numerically in the limits where the baryon density is small and large at fixed temperature between the gluon deconfinement and chiral symmetry restoration. The gravitational stability of the hypothetical multiquark stars are discussed using the Tolman-Oppenheimer-Volkoff equation. Since the equations of state of the multiquarks can be well approximated by different power laws for small and large density, the content of the multiquark stars has the core and crust structure. We found that most of the mass of the star comes from the crust region where the density is relatively small. The mass limit of the multiquark star is determined as well as its relation to the star radius. For typical energy density scale of 10GeV/fm310\text{GeV}/\text{fm}^{3}, the converging mass and radius of the hypothetical multiquark star in the limit of large central density are approximately 2.63.92.6-3.9 solar mass and 15-27 km. The adiabatic index and sound speed distributions of the multiquark matter in the star are also calculated and discussed. The sound speed never exceeds the speed of light and the multiquark matters are thus compressible even at high density and pressure.Comment: 27 pages, 17 figures, 1 table, JHEP versio

    Silencing of Histone Deacetylase 6 Decreases Cellular Malignancy and Contributes to Primary Cilium Restoration, Epithelial-to-Mesenchymal Transition Reversion, and Autophagy Inhibition in Glioblastoma Cell Lines

    Get PDF
    Glioblastoma multiforme, the most common type of malignant brain tumor as well as the most aggressive one, lacks an effective therapy. Glioblastoma presents overexpression of mesenchymal markers Snail, Slug, and N-Cadherin and of the autophagic marker p62. Glioblastoma cell lines also present increased autophagy, overexpression of mesenchymal markers, Shh pathway activation, and lack of primary cilia. In this study, we aimed to evaluate the role of HDAC6 in the pathogenesis of glioblastoma, as HDAC6 is the most overexpressed of all HDACs isoforms in this tumor. We treated glioblastoma cell lines with siHDAC6. HDAC6 silencing inhibited proliferation, migration, and clonogenicity of glioblastoma cell lines. They also reversed the mesenchymal phenotype, decreased autophagy, inhibited Shh pathway, and recovered the expression of primary cilia in glioblastoma cell lines. These results demonstrate that HDAC6 might be a good target for glioblastoma treatment

    Anisotropy dependence of the fluctuation spectroscopy in the critical and gaussian regimes in superconducting NaFe1-xCoxAs single crystals

    Get PDF
    We investigate thermal fluctuations in terms of diamagnetism and magnetotransport in superconducting NaFe1-xCoxAs single crystals with different doping levels. Results show that in the case of optimal doped and lightly overdoped (x= 0.03, 0.05) crystals the analysis in the critical as well as in the Gaussian fluctuation regions is consistent with the Ginzburg-Landau 3D fluctuation theory. However, in the case of strongly overdoped samples (x >= 0.07) the Ullah-Dorsey scaling of the fluctuation induced magnetoconductivity in the critical region confirms that thermal fluctuations exhibit a 3D anisotropic nature only in a narrow temperature region around T-c(H). This is consistent with the fact that in these samples the fluctuation effects in the Gaussian region above T-c may be described by the Lawrence-Doniach approach. Our results indicate that the anisotropy of these materials increases significantly with the doping level

    The Fetal Hypothalamus Has the Potential to Generate Cells with a Gonadotropin Releasing Hormone (GnRH) Phenotype

    Get PDF
    Neurospheres (NS) are colonies of neural stem and precursor cells capable of differentiating into the central nervous system (CNS) cell lineages upon appropriate culture conditions: neurons, and glial cells. NS were originally derived from the embryonic and adult mouse striatum subventricular zone. More recently, experimental evidence substantiated the isolation of NS from almost any region of the CNS, including the hypothalamus. Here we report a protocol that enables to generate large quantities of NS from both fetal and adult rat hypothalami. We found that either FGF-2 or EGF were capable of inducing NS formation from fetal hypothalamic cultures, but that only FGF-2 is effective in the adult cultures. The hypothalamic-derived NS are capable of differentiating into neurons and glial cells and most notably, as demonstrated by immunocytochemical detection with a specific anti-GnRH antibody, the fetal cultures contain cells that exhibit a GnRH phenotype upon differentiation. This in vitro model should be useful to study the molecular mechanisms involved in GnRH neuronal differentiation

    Time scales and exponential trends to equilibrium: Gaussian model problems

    Get PDF
    We review results on the exponential convergence of multi- dimensional Ornstein-Uhlenbeck processes and discuss related notions of characteristic timescales with concrete model systems. We focus, on the one hand, on exit time distributions and provide ecplicit expressions for the exponential rate of the distribution in the small noise limit. On the other hand, we consider relaxation timescales of the process to its equi- librium measured in terms of relative entropy and discuss the connection with exit probabilities. Along these lines, we study examples which il- lustrate specific properties of the relaxation and discuss the possibility of deriving a simulation-based, empirical definition of slow and fast de- grees of freedom which builds upon a partitioning of the relative entropy functional in conjuction with the observed relaxation behaviour

    Diagnostic and economic evaluation of new biomarkers for Alzheimer's disease: the research protocol of a prospective cohort study

    Get PDF
    Doc number: 72 Abstract Background: New research criteria for the diagnosis of Alzheimer's disease (AD) have recently been developed to enable an early diagnosis of AD pathophysiology by relying on emerging biomarkers. To enable efficient allocation of health care resources, evidence is needed to support decision makers on the adoption of emerging biomarkers in clinical practice. The research goals are to 1) assess the diagnostic test accuracy of current clinical diagnostic work-up and emerging biomarkers in MRI, PET and CSF, 2) perform a cost-consequence analysis and 3) assess long-term cost-effectiveness by an economic model. Methods/design: In a cohort design 241 consecutive patients suspected of having a primary neurodegenerative disease are approached in four academic memory clinics and followed for two years. Clinical data and data on quality of life, costs and emerging biomarkers are gathered. Diagnostic test accuracy is determined by relating the clinical practice and new research criteria diagnoses to a reference diagnosis. The clinical practice diagnosis at baseline is reflected by a consensus procedure among experts using clinical information only (no biomarkers). The diagnosis based on the new research criteria is reflected by decision rules that combine clinical and biomarker information. The reference diagnosis is determined by a consensus procedure among experts based on clinical information on the course of symptoms over a two-year time period. A decision analytic model is built combining available evidence from different resources among which (accuracy) results from the study, literature and expert opinion to assess long-term cost-effectiveness of the emerging biomarkers. Discussion: Several other multi-centre trials study the relative value of new biomarkers for early evaluation of AD and related disorders. The uniqueness of this study is the assessment of resource utilization and quality of life to enable an economic evaluation. The study results are generalizable to a population of patients who are referred to a memory clinic due to their memory problems. Trial registration: NCT0145089
    corecore