20 research outputs found

    Role of the microenvironment in tumourigenesis: focus on virus-induced tumors

    No full text
    Tumor microenvironment can differ considerably in various types of tumors in terms of cellular and cytokine networks and molecular drivers. The well known link between inflammation and cancer has recently found a number of genetic and molecular confirmations. In this respect, numerous reports have revealed that infection and chronic inflammation can contribute to cancer development, progression and control. Adhesion molecules, chemokines and proinflammatory cytokines, that enroll leukocytes, are persistently present in cancer microenvironment, thus increasing the risk for developing tumors. In this respect, cancer-derived microvescicles, in particular exosomes, exert an important role in the recruitment and reprogramming of components of tumor microenvironment. The relationship between cancer and virus infection has generated, in recent years, a great interest for studies aiming to better understand the role of the immune system in the control of these infections and of the immune cofactors in the promotion of the virus-induced neoplastic transformation. This suggests that virus-induced immune alterations may play a role to create an immunotolerogenic microenvironment during the carcinogenesis process

    Interferon-β Induces Cellular Senescence in Cutaneous Human Papilloma Virus-Transformed Human Keratinocytes by Affecting p53 Transactivating Activity.

    No full text
    Interferon (IFN)-beta inhibits cell proliferation and affects cell cycle in keratinocytes transformed by both mucosal high risk Human Papilloma Virus (HPV) and cutaneous HPV E6 and E7 proteins. In particular, upon longer IFN-beta treatments, cutaneous HPV38 expressing cells undergo senescence. IFN-beta appears to induce senescence by upregulating the expression of the tumor suppressor PML, a well known IFN-induced gene. Indeed, experiments in gene silencing via specific siRNAs have shown that PML is essential in the execution of the senescence programme and that both p53 and p21 pathways are involved. IFN-beta treatment leads to a modulation of p53 phosphorylation and acetylation status and a reduction in the expression of the p53 dominant negative DNp73. These effects allow the recovery of p53 transactivating activity of target genes involved in the control of cell proliferation. Taken together, these studies suggest that signaling through the IFN pathway might play an important role in cellular senescence. This additional understanding of IFN antitumor action and mechanisms influencing tumor responsiveness or resistance appears useful in aiding further promising development of biomolecular strategies in the IFN therapy of cancer

    Successful therapeutic vaccination with integrase defective lentiviral vector expressing nononcogenic human papillomavirus E7 protein

    No full text
    Persistent infection with high risk genotypes of human papillomavirus (HPV) is the cause of cervical cancer, one of most common cancer among woman worldwide, and represents an important risk factor associated with other anogenital and oropharyngeal cancers in men and women. Here, we designed a therapeutic vaccine based on integrase defective lentiviral vector (IDLV) to deliver a mutated nononcogenic form of HPV16 E7 protein, considered as a tumor specific antigen for immunotherapy of HPV-associated cervical cancer, fused to calreticulin (CRT), a protein able to enhance major histocompatibility complex class I antigen presentation (IDLV-CRT/E7). Vaccination with IDLV-CRT/E7 induced a potent and persistent E7-specific T cell response up to 1 year after a single immunization. Importantly, a single immunization with IDLV-CRT/E7 was able to prevent growth of E7-expressing TC-1 tumor cells and to eradicate established tumors in mice. The strong therapeutic effect induced by the IDLV-based vaccine in this preclinical model suggests that this strategy may be further exploited as a safe and attractive anticancer immunotherapeutic vaccine in human

    Simian immunodeficiency virus-Vpx for improving integrase defective lentiviral vector-based vaccines

    No full text
    BACKGROUND: Integrase defective lentiviral vectors (IDLV) represent a promising delivery system for immunization purposes. Human dendritic cells (DC) are the main cell types mediating the immune response and are readily transduced by IDLV, allowing effective triggering of in vitro expansion of antigen-specific primed CD8+ T cells. However, IDLV expression in transduced DC is at lower levels than those of the integrase (IN) competent counterpart, thus requiring further improvement of IDLV for future use in the clinic. RESULTS: In this paper we show that the addition of simian immunodeficiency (SIV)-Vpx protein in the vector preparation greatly improves transduction of human and simian DC, but not of murine DC, thus increasing the ability of transduced DC to act as functional antigen presenting cells, in the absence of integrated vector sequences. Importantly, the presence of SIV-Vpx allows for using lower dose of input IDLV during in vitro transduction, thus further improving the IDLV safety profile. CONCLUSIONS: These results have significant implications for the development of IDLV-based vaccines

    Chemical composition of felt-tip pen inks

    No full text
    Felt-tip pens are frequently used for the realization of sketches, drawings, architectural projects, and other technical designs. The formulations of these inks are usually rather complex and may be associated to those of modern paint materials where, next to the binding medium and pigments/dyes, solvents, fillers, emulsifiers, antioxidants, plasticizers, light stabilizers, biocides, and so on are commonly added. Felt-tip pen inks are extremely sensitive to degradation and especially exposure to light may cause chromatic changes and fading. In this study, we report on the complete chemical characterization of modern felt-tip pen inks that are commercially available and commonly used for the realization of artworks. Three brands of felt-tip pens (Faber-Castell, Edding, and Stabilo) were investigated with complementary analytical techniques such as thin-layer chromatography (TLC), VIS-reflectance spectroscopy, micro-Raman spectroscopy, surface-enhanced Raman spectroscopy (SERS), pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS), GC-MS, and Fourier transform infrared (FTIR) spectroscopy. The use of TLC proved to be very powerful in the study of complex mixtures of synthetic dyes. First derivatives of the reflectance spectra acquired on the TLC spots were useful in the preliminary identification of the dye, followed by Raman spectroscopy and SERS, which allowed for the unambiguous determination of the chemical composition of the pigments (phthalocyanines, dioxazines, and azo pigments) and dyes (azo dyes, triarylmethanes, xanthenes). FTIR spectroscopy was used especially for the detection of additives, as well as for confirming the nature of solvents and dyes/pigments. Finally, (Py-)GC-MS data provided information on the binders (styrene-acrylic resins, plant gums), solvents, and additives, as well as on pigments and dyes
    corecore