9 research outputs found

    Complexity Analysis in Focal Epilepsy Using Entropy Methods

    No full text

    Computerized Analysis of EEG to Determine Focal Epilepsy

    No full text

    Machine Learning-Based Detection of Dengue from Blood Smear Images Utilizing Platelet and Lymphocyte Characteristics

    No full text
    Dengue fever, also known as break-bone fever, can be life-threatening. Caused by DENV, an RNA virus from the Flaviviridae family, dengue is currently a globally important public health problem. The clinical methods available for dengue diagnosis require skilled supervision. They are manual, time-consuming, labor-intensive, and not affordable to common people. This paper describes a method that can support clinicians during dengue diagnosis. It is proposed to automate the peripheral blood smear (PBS) examination using Artificial Intelligence (AI) to aid dengue diagnosis. Nowadays, AI, especially Machine Learning (ML), is increasingly being explored for successful analyses in the biomedical field. Digital pathology coupled with AI holds great potential in developing healthcare services. The automation system developed incorporates a blob detection method to detect platelets and thrombocytopenia from the PBS images. The results achieved are clinically acceptable. Moreover, an ML-based technique is proposed to detect dengue from the images of PBS based on the lymphocyte nucleus. Ten features are extracted, including six morphological and four Gray Level Spatial Dependance Matrix (GLSDM) features, out of the lymphocyte nucleus of normal and dengue cases. Features are then subjected to various popular supervised classifiers built using a ten-fold cross-validation policy for automated dengue detection. Among all the classifiers, the best performance was achieved by Support Vector Machine (SVM) and Decision Tree (DT), each with an accuracy of 93.62%. Furthermore, 1000 deep features extracted using pre-trained MobileNetV2 and 177 textural features extracted using Local binary pattern (LBP) from the lymphocyte nucleus are subjected to feature selection. The ReliefF selected 100 most significant features are then fed to the classifiers. The best performance was attained using an SVM classifier with 95.74% accuracy. With the obtained results, it is evident that this proposed approach can efficiently contribute as an adjuvant tool for diagnosing dengue from the digital microscopic images of PBS

    Channel Intensity and Edge-Based Estimation of Heart Rate via Smartphone Recordings

    No full text
    Smartphones, today, come equipped with a wide variety of sensors and high-speed processors that can capture, process, store, and communicate different types of data. Coupled with their ubiquity in recent years, these devices show potential as practical and portable healthcare monitors that are both cost-effective and accessible. To this end, this study focuses on examining the feasibility of smartphones in estimating the heart rate (HR), using video recordings of the users’ fingerprints. The proposed methodology involves two-stage processing that combines channel-intensity-based approaches (Channel-Intensity mode/Counter method) and a novel technique that relies on the spatial and temporal position of the recorded fingerprint edges (Edge-Detection mode). The dataset used here included 32 fingerprint video recordings taken from 6 subjects, using the rear camera of 2 smartphone models. Each video clip was first validated to determine whether it was suitable for Channel-Intensity mode or Edge-Detection mode, followed by further processing and heart rate estimation in the selected mode. The relative accuracy for recordings via the Edge-Detection mode was 93.04%, with a standard error of estimates (SEE) of 6.55 and Pearson’s correlation r > 0.91, while the Channel-Intensity mode showed a relative accuracy of 92.75%, with an SEE of 5.95 and a Pearson’s correlation r > 0.95. Further statistical analysis was also carried out using Pearson’s correlation test and the Bland–Altman method to verify the statistical significance of the results. The results thus show that the proposed methodology, through smartphones, is a potential alternative to existing technologies for monitoring a person’s heart rate

    Customized Deep Learning Classifier for Detection of Acute Lymphoblastic Leukemia Using Blood Smear Images

    No full text
    Acute lymphoblastic leukemia (ALL) is a rare type of blood cancer caused due to the overproduction of lymphocytes by the bone marrow in the human body. It is one of the common types of cancer in children, which has a fair chance of being cured. However, this may even occur in adults, and the chances of a cure are slim if diagnosed at a later stage. To aid in the early detection of this deadly disease, an intelligent method to screen the white blood cells is proposed in this study. The proposed intelligent deep learning algorithm uses the microscopic images of blood smears as the input data. This algorithm is implemented with a convolutional neural network (CNN) to predict the leukemic cells from the healthy blood cells. The custom ALLNET model was trained and tested using the microscopic images available as open-source data. The model training was carried out on Google Collaboratory using the Nvidia Tesla P-100 GPU method. Maximum accuracy of 95.54%, specificity of 95.81%, sensitivity of 95.91%, F1-score of 95.43%, and precision of 96% were obtained by this accurate classifier. The proposed technique may be used during the pre-screening to detect the leukemia cells during complete blood count (CBC) and peripheral blood tests

    Hamlet-Pattern-Based Automated COVID-19 and Influenza Detection Model Using Protein Sequences

    No full text
    SARS-CoV-2 and Influenza-A can present similar symptoms. Computer-aided diagnosis can help facilitate screening for the two conditions, and may be especially relevant and useful in the current COVID-19 pandemic because seasonal Influenza-A infection can still occur. We have developed a novel text-based classification model for discriminating between the two conditions using protein sequences of varying lengths. We downloaded viral protein sequences of SARS-CoV-2 and Influenza-A with varying lengths (all 100 or greater) from the NCBI database and randomly selected 16,901 SARS-CoV-2 and 19,523 Influenza-A sequences to form a two-class study dataset. We used a new feature extraction function based on a unique pattern, HamletPat, generated from the text of Shakespeare’s Hamlet, and a signum function to extract local binary pattern-like bits from overlapping fixed-length (27) blocks of the protein sequences. The bits were converted to decimal map signals from which histograms were extracted and concatenated to form a final feature vector of length 1280. The iterative Chi-square function selected the 340 most discriminative features to feed to an SVM with a Gaussian kernel for classification. The model attained 99.92% and 99.87% classification accuracy rates using hold-out (75:25 split ratio) and five-fold cross-validations, respectively. The excellent performance of the lightweight, handcrafted HamletPat-based classification model suggests that it can be a valuable tool for screening protein sequences to discriminate between SARS-CoV-2 and Influenza-A infections
    corecore