26 research outputs found

    A facile, one-pot procedure for the conversion of aromatic aldehydes to esters, as well as thioesters and amides, via acyl hydrazide intermediates

    Get PDF
    In the present work, an effective and facile one-pot dealloying strategy has been developed to synthesize monolithic asymmetry-patterned nanoporous copper ribbons (AP-NPCRs) from melt-spun bi-phase Al 32 at% Cu alloy with trace α-Al. The microstructure and nanoporosity of these AP-NPCRs were characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, high-resolution transmission electron microscopy, and Brunauer–Emmett–Teller measurements. The results show that the cooling rate and dealloying solution have a significant influence on formation, microstructure and nanoporosity of AP-NPCRs. The quenching surface of porous products has regular bimodal channel size distributions regardless of corrosive solution species, while the free surface shows a homogeneous porous network nanostructure in acidic solution and anomalous bimodal nanoporous architecture in alkaline medium. Additionally, the microstructure (surface morphology, ligament/channel sizes and distribution) and nanoporosity of AP-NPCRs can be modulated effectively by simply changing the dealloying solution

    Next-generation disulfide stapling: reduction and functional re-bridging all in one

    Get PDF
    Herein we present a significant step towards next-generation disulfide stapling reagents. A novel class of reagent has been designed to effect both disulfide reduction and functional re-bridging. The strategy has been applied to great success across various peptides and proteins. Moreover, application to a multi-disulfide system resulted in functional re-bridging without disulfide scrambling

    Enabling the controlled assembly of antibody conjugates with a loading of two modules without antibody engineering

    Get PDF
    The generation of antibody conjugates with a loading of two modules is desirable for a host of reasons. Whilst certain antibody engineering approaches have been useful in the preparation of such constructs, a reliable method based on a native antibody scaffold without the use of enzymes or harsh oxidative conditions has hitherto not been achieved. The use of native antibodies has several advantages in terms of cost, practicality, accessibility, time and overall efficiency. Herein we present a novel, reliable method of furnishing antibody conjugates with a loading of two modules starting from a native antibody scaffold

    Cysteine specific bioconjugation with benzyl isothiocyanates

    Get PDF
    Protein labelling has a wide variety of applications in medicinal chemistry and chemical biology. In addition to covalent inhibition, specific labelling of biomolecules with fluorescent dyes is important in both target discovery, validation and diagnostics. Our research was conducted through the fragment-based development of a new benzyl-isothiocyanate-activated fluorescent dye based on the fluorescein scaffold. This molecule was evaluated against fluorescein isothiocyanate, a prevalent labelling agent. The reactivity and selectivity of phenyl- and benzyl isothiocyanate were compared at different pHs, and their activity was tested on several protein targets. Finally, the clinically approved antibody trastuzumab (and it's Fab fragment) were specifically labelled through reaction with free cysteines reductively liberated from their interchain disulfide bonds. The newly developed benzyl-fluorescein isothiocyanate and its optimized labelling protocol stands to be a valuable addition to the tool kit of chemical biology

    Structural and Functional Deficits in a Neuronal Calcium Sensor-1 Mutant Identified in a Case of Autistic Spectrum Disorder

    Get PDF
    Neuronal calcium sensor-1 (NCS-1) is a Ca2+ sensor protein that has been implicated in the regulation of various aspects of neuronal development and neurotransmission. It exerts its effects through interactions with a range of target proteins one of which is interleukin receptor accessory protein like-1 (IL1RAPL1) protein. Mutations in IL1RAPL1 have recently been associated with autism spectrum disorders and a missense mutation (R102Q) on NCS-1 has been found in one individual with autism. We have examined the effect of this mutation on the structure and function of NCS-1. From use of NMR spectroscopy, it appeared that the R102Q affected the structure of the protein particularly with an increase in the extent of conformational exchange in the C-terminus of the protein. Despite this change NCS-1(R102Q) did not show changes in its affinity for Ca2+ or binding to IL1RAPL1 and its intracellular localisation was unaffected. Assessment of NCS-1 dynamics indicated that it could rapidly cycle between cytosolic and membrane pools and that the cycling onto the plasma membrane was specifically changed in NCS-1(R102Q) with the loss of a Ca2+ -dependent component. From these data we speculate that impairment of the normal cycling of NCS-1 by the R102Q mutation could have subtle effects on neuronal signalling and physiology in the developing and adult brain

    ATHENA detector proposal - a totally hermetic electron nucleus apparatus proposed for IP6 at the Electron-Ion Collider

    Get PDF
    ATHENA has been designed as a general purpose detector capable of delivering the full scientific scope of the Electron-Ion Collider. Careful technology choices provide fine tracking and momentum resolution, high performance electromagnetic and hadronic calorimetry, hadron identification over a wide kinematic range, and near-complete hermeticity.This article describes the detector design and its expected performance in the most relevant physics channels. It includes an evaluation of detector technology choices, the technical challenges to realizing the detector and the R&D required to meet those challenges

    Community Health Project Report Series

    No full text
    corecore