28 research outputs found

    Remarkable thermal stability of gold nanoparticles functionalised with ruthenium phthalocyanine complexes

    Full text link
    © 2016 IOP Publishing Ltd. A gold nanoparticle (AuNP) ruthenium phthalocyanine (RuPc) nanocomposite has been synthesised that exhibits high thermal stability. Electrical resistance measurements revealed that the nanocomposite is stable up to ∼320 °C. Examination of the nanocomposite and the RuPc stabiliser complex using thermogravimetric analysis and differential scanning calorimetry show that the remarkable thermal stability is due to the RuPc molecules, which provide an effective barrier to sintering of the AuNPs

    Charge state switching of Cu acceptors in ZnO nanorods

    Full text link
    © 2017 Author(s). Undoped and Ga-doped ZnO nanorods both exhibit an intense green luminescence (GL) band centered at ∼2.4 eV. Unlike the defect-related GL in undoped nanorods, the GL band in Ga-doped nanorods displays a periodic fine structure separated by 72 meV, which consists of doublets with an energy spacing of 30 ± 3 meV. The emergence of the structured GL is due to the Cu+ state being stabilized by the rise in the Fermi level above the 0/- (Cu2+/Cu+) charge transfer level as a result of Ga donor incorporation. From a combination of optical characterization and simulation using the Brownian oscillator model, the doublet fine structures are shown to originate from two hole transitions with the Cu+ state located at 390 meV above the valence band

    Quantitative immuno-mass spectrometry imaging of skeletal muscle dystrophin

    Full text link
    Emerging and promising therapeutic interventions for Duchenne muscular dystrophy (DMD) are confounded by the challenges of quantifying dystrophin. Current approaches have poor precision, require large amounts of tissue, and are difficult to standardize. This paper presents an immuno-mass spectrometry imaging method using gadolinium (Gd)-labeled anti-dystrophin antibodies and laser ablation-inductively coupled plasma-mass spectrometry to simultaneously quantify and localize dystrophin in muscle sections. Gd is quantified as a proxy for the relative expression of dystrophin and was validated in murine and human skeletal muscle sections following k-means clustering segmentation, before application to DMD patients with different gene mutations where dystrophin expression was measured up to 100 µg kg−1 Gd. These results demonstrate that immuno-mass spectrometry imaging is a viable approach for pre-clinical to clinical research in DMD. It rapidly quantified relative dystrophin in single tissue sections, efficiently used valuable patient resources, and may provide information on drug efficacy for clinical translation

    Matching sensitivity to abundance: High resolution immuno-mass spectrometry imaging of lanthanide labels and endogenous elements in the murine brain

    Full text link
    © 2020 The Royal Society of Chemistry. This work introduces a new method for immuno-mass spectrometry imaging via quadrupole-based laser ablation-inductively coupled plasma-mass spectrometry instruments that is matched to the abundance of elements in biological tissues. Manipulation of ion-optics and quadrupole mass filter parameters provided increased transmission of low level high-mass elements, which are typically used as labels for antibodies, at the expense of highly abundant endogenous low-mass elements. Transmission of mid-mass elements such as transition metals was only slightly affected. The implications for mass resolution and background signals are critically discussed and signal to noise ratios and imaging capabilities are compared to those obtained from a standard method. This novel approach resulted in a 6-fold improved signal to noise ratio for lanthanides that are routinely used as elemental labels for antibodies to target protein distributions in biological tissues. This increase in signal intensity, enhanced contrasts, lower limits of detection and the potential to improve spatial resolution contributed to enhanced imaging and trace analyses, as demonstrated by imaging murine brain sections of the hippocampal system and substantia nigra

    Mood Modulates Auditory Laterality of Hemodynamic Mismatch Responses during Dichotic Listening

    Get PDF
    Hemodynamic mismatch responses can be elicited by deviant stimuli in a sequence of standard stimuli even during cognitive demanding tasks. Emotional context is known to modulate lateralized processing. Right-hemispheric negative emotion processing may bias attention to the right and enhance processing of right-ear stimuli. The present study examined the influence of induced mood on lateralized pre-attentive auditory processing of dichotic stimuli using functional magnetic resonance imaging (fMRI). Faces expressing emotions (sad/happy/neutral) were presented in a blocked design while a dichotic oddball sequence with consonant-vowel (CV) syllables in an event-related design was simultaneously administered. Twenty healthy participants were instructed to feel the emotion perceived on the images and to ignore the syllables. Deviant sounds reliably activated bilateral auditory cortices and confirmed attention effects by modulation of visual activity. Sad mood induction activated visual, limbic and right prefrontal areas. A lateralization effect of emotion-attention interaction was reflected in a stronger response to right-ear deviants in the right auditory cortex during sad mood. This imbalance of resources may be a neurophysiological correlate of laterality in sad mood and depression. Conceivably, the compensatory right-hemispheric enhancement of resources elicits increased ipsilateral processing

    Effect of alirocumab on mortality after acute coronary syndromes. An analysis of the ODYSSEY OUTCOMES randomized clinical trial

    Get PDF
    Background: Previous trials of PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitors demonstrated reductions in major adverse cardiovascular events, but not death. We assessed the effects of alirocumab on death after index acute coronary syndrome. Methods: ODYSSEY OUTCOMES (Evaluation of Cardiovascular Outcomes After an Acute Coronary Syndrome During Treatment With Alirocumab) was a double-blind, randomized comparison of alirocumab or placebo in 18 924 patients who had an ACS 1 to 12 months previously and elevated atherogenic lipoproteins despite intensive statin therapy. Alirocumab dose was blindly titrated to target achieved low-density lipoprotein cholesterol (LDL-C) between 25 and 50 mg/dL. We examined the effects of treatment on all-cause death and its components, cardiovascular and noncardiovascular death, with log-rank testing. Joint semiparametric models tested associations between nonfatal cardiovascular events and cardiovascular or noncardiovascular death. Results: Median follow-up was 2.8 years. Death occurred in 334 (3.5%) and 392 (4.1%) patients, respectively, in the alirocumab and placebo groups (hazard ratio [HR], 0.85; 95% CI, 0.73 to 0.98; P=0.03, nominal P value). This resulted from nonsignificantly fewer cardiovascular (240 [2.5%] vs 271 [2.9%]; HR, 0.88; 95% CI, 0.74 to 1.05; P=0.15) and noncardiovascular (94 [1.0%] vs 121 [1.3%]; HR, 0.77; 95% CI, 0.59 to 1.01; P=0.06) deaths with alirocumab. In a prespecified analysis of 8242 patients eligible for ≥3 years follow-up, alirocumab reduced death (HR, 0.78; 95% CI, 0.65 to 0.94; P=0.01). Patients with nonfatal cardiovascular events were at increased risk for cardiovascular and noncardiovascular deaths (P<0.0001 for the associations). Alirocumab reduced total nonfatal cardiovascular events (P<0.001) and thereby may have attenuated the number of cardiovascular and noncardiovascular deaths. A post hoc analysis found that, compared to patients with lower LDL-C, patients with baseline LDL-C ≥100 mg/dL (2.59 mmol/L) had a greater absolute risk of death and a larger mortality benefit from alirocumab (HR, 0.71; 95% CI, 0.56 to 0.90; Pinteraction=0.007). In the alirocumab group, all-cause death declined wit h achieved LDL-C at 4 months of treatment, to a level of approximately 30 mg/dL (adjusted P=0.017 for linear trend). Conclusions: Alirocumab added to intensive statin therapy has the potential to reduce death after acute coronary syndrome, particularly if treatment is maintained for ≥3 years, if baseline LDL-C is ≥100 mg/dL, or if achieved LDL-C is low. Clinical Trial Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01663402

    Pew2: Open-Source Imaging Software for Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.

    Full text link
    Open-sourced software is a key component of the mass spectrometry imaging field, where transparency in data processing is vital. Imaging of trace elements and immunohistochemically labeled biomolecules in tissue sections is typically performed using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). However, efficient and facile processing of images is hampered by a lack of verifiable and user-friendly software that supports multiple LA-ICP-MS platforms. In this technical note, we introduce Pew2, a LA-ICP-MS specific and feature-rich open-source image processing software that is compatible with common ICP-MS vendors. Pew2 is designed to be fast and easy to use and adheres to modern visualization philosophies to maximize productivity and to minimize data interpretation errors and image anomalies

    Super-Resolution Reconstruction for Two-and Three-Dimensional LA-ICP-MS Bioimaging

    Full text link
    © 2019 American Chemical Society. The resolution of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) elemental bioimaging is usually constrained by the diameter of the laser spot size and is often not adequate to explore in situ subcellular distributions of elements and proteins in biological tissue sections. Super-resolution reconstruction is a method typically used for many imaging modalities and combines multiple lower resolution images to create a higher resolution image. Here, we present a super-resolution reconstruction method for LA-ICP-MS imaging by ablating consecutive layers of a biological specimen with offset orthogonal scans, resulting in a 10× improvement in resolution for quantitative measurement of dystrophin in murine muscle fibers. Layer-by-layer image reconstruction was also extended to the third dimension without the requirement of image registration across multiple thin section specimens. Quantitative super-resolution reconstruction, combined with Gaussian filtering and application of the Richardson-Lucy total variation algorithm, provided superior image clarity and fidelity in two-and three-dimensions

    Acetonitrile adduct analysis of underivatised amino acids offers improved sensitivity for hydrophilic interaction liquid chromatography tandem mass-spectrometry.

    Full text link
    LC-MS/MS method development for native amino acid detection can be problematic due to low ionisation efficiencies, in source fragmentation, potential for cluster ion formation and incorrect application of chromatography techniques. This has led to the majority of the scientific community derivatising amino acids for more sensitive analysis. Derivatisation has several benefits including reduced signal-to-noise ratios, more efficient ionisation, and a change in polarity, allowing the use of reverse phase chromatography. However, derivatisation of amino acids can be expensive, requires additional sample preparation steps, is more time consuming and increases sample instability, due to the most derivatised amino acids only be stable for finite amount of time. While showing initial promise, development of reliable hydrophilic interaction liquid chromatography (HILIC) separation methods has presented difficulties for the analyst including irreproducible separation and poor sensitivity. This study aimed to find a means to improve the detection sensitivity of the 20 protein amino acids by HILIC-MS/MS. We describe the use of previously undescribed amino acid-acetonitrile (ACN) adducts to improve detection of 16 out of the 20 amino acids. While all amino acids examined did form an ACN adduct, 4 had low intensity adduct formation compared to their protonated state, 3 of which are classified as basic amino acids. For 15 of the 20 amino acids tested, we used the ACN adduct for both quantification and qualification ions and demonstrated a significant enhancement in signal-to-noise ratio, ranging from 23 to 1762% improvement. Lower LODs, LOQs and lower ranges of linearity were also achieved for these amino acids. The optimised method was applied to a human neuroblastoma cell line (SH-SY5Y) with the potential to be applied to other complex sample types. The improved sensitivity this method offers simplifies sample preparation and reduces the costs of amino acid analysis compared to those methods that rely on derivatisation for sensitivity

    Enhancement of excitonic and defect-related luminescence in neutron transmutation doped β-Ga2 O3

    Full text link
    Neutron irradiation analysis, inductively coupled plasma mass spectrometry (ICPMS), and cathodoluminescence (CL) spectroscopy are used to investigate the influence of transmuted Ge incorporation on the luminescence properties of β-Ga2O3 single crystals. Calculations based on Ga2O3-neutron interaction reveal temporal variations of both Ge and Zn concentrations as a function of time during and after neutron irradiation. To produce a concentration of 5×1018Gedonors/cm3 from the neutron transmutation of Ga, the β-Ga2O3 crystal was irradiated for 27 h, which was accompanied by the incorporation of 1016Znacceptors/cm3. These calculated dopant concentrations are confirmed by ICPMS. The β-Ga2O3 crystals exhibit a UV band at 3.40 eV due to self-trapped holes (STHs) and two blue donor-acceptor pair (DAP) peaks at 3.14 eV (BL1) and 2.92 eV (BL2). In addition to the neutron-induced incorporation of substitutional Ge donors and Zn acceptors on Ga sites, Ga vacancies (VGa) were created by high-energy neutrons in the flux, which strongly enhanced the BL1 peak. The VGa acceptors compensate the neutron-induced Ge donors, making the Ga2O3 crystal highly resistive. Concurrent temperature-resolved CL measurements of the β-Ga2O3 before and after neutron irradiation reveal a twofold increase in both the STH and BL1 peaks. This result suggests that STHs are preferentially localized at an O site adjacent to VGa, as theoretically predicted by Kananen et al. [Appl. Phys. Lett. 110, 202104 (2017)10.1063/1.4983814.]. Analysis of the Ga2O3 CL temperature dependence reveals that the UV and BL1 bands after the neutron irradiation exhibit an equivalent activation energy of 100±10meV due to the presence of a neutron-induced defect that acts as an efficient competitive nonradiative recombination channel. The results also provide evidence that the BL1 and BL2 bands arise from different DAP pairs
    corecore