16 research outputs found
Accuracy of a screening tool for medication adherence: A systematic review and meta-analysis of the Morisky Medication Adherence Scale-8
This systematic review examined the reliability and validity of the Morisky Medication Adherence Scale-8 (MMAS-8), which has been widely used to assess patient medication adherence in clinical research and medical practice.Of 418 studies identified through searching 4 electronic databases, we finally analyzed 28 studies meeting the selection criteria of this study regarding the reliability and validity of MMAS-8 including sensitivity and specificity. Meta-analysis for Cronbach's α, intraclass correlation coefficient (ICC), sensitivity and specificity to detect a patient with nonadherence to medication were performed. The pooled estimates for Cronbach's α and ICC were calculated using the random-effects weighted T transformation. A bivariate random-effects model was used to estimate pooled sensitivity and specificity.The pooled Cronbach's α estimate for type 2 diabetes group in 7 studies and osteoporosis group in 3 studies were 0.67 (95% Confidence Interval(CI), 0.65 to 0.69) and 0.77 (95% CI, 0.72 to 0.83), respectively. With regard to test-retest, the pooled ICC for type 2 diabetes group in 3 studies and osteoporosis group in 2 studies were 0.81 (95% CI, 0.75 to 0.85) and 0.80 (95% CI, 0.74 to 0.85). For a cut-off value of 6, the pooled sensitivity and specificity in 12 studies were 0.43 (95% CI, 0.33 to 0.53) and 0.73 (95% CI, 0.68 to 0.78), respectively.The MMAS-8 had acceptable internal consistency and reproducibility in a few diseases like type 2 diabetes. Using the cut-off value of 6, criterion validity was not enough good to validly screen a patient with nonadherence to medication. However, this study did not calculated a pooled estimate for criterion validity using the higher values than 6 as a cut-off value since most of included individual studies did not report criterion validity based on those values
Hsp70 expression and induction as a readout for detection of immune modulatory components in food
Stress proteins such as heat shock proteins (Hsps) are up-regulated in cells in response to various forms of stress, like thermal and oxidative stress and inflammation. Hsps prevent cellular damage and increase immunoregulation by the activation of anti-inflammatory T-cells. Decreased capacity for stress-induced Hsp expression is associated with immune disorders. Thus, therapeutic boosting Hsp expression might restore or enhance cellular stress resistance and immunoregulation. Especially food- or herb-derived phytonutrients may be attractive compounds to restore optimal Hsp expression in response to stress. In the present study, we explored three readout systems to monitor Hsp70 expression in a manner relevant for the immune system and evaluated novel Hsp co-inducers. First, intracellular staining and analysis by flow cytometry was used to detect stress and/or dietary compound induced Hsp70 expression in multiple rodent cell types efficiently. This system was used to screen a panel of food-derived extracts with potent anti-oxidant capacity. This strategy yielded the identity of several new enhancers of stress-induced Hsp70 expression, among them carvacrol, found in thyme and oregano. Second, CD4+ T-cell hybridomas were generated that specifically recognized an immunodominant Hsp70 peptide. These hybridomas were used to show that carvacrol enhanced Hsp70 levels increased T-cell activation. Third, we generated a DNAJB1-luc-O23 reporter cell line to show that carvacrol increased the transcriptional activation of a heat shock promoter in the presence of arsenite. These assay systems are generally applicable to identify compounds that affect the Hsp level in cells of the immune system