9 research outputs found

    Thermal modification of wood and a complex study of its properties by magnetic resonance and other methods

    Get PDF
    © 2016, Springer-Verlag Berlin Heidelberg.Thermal modification of wood is an effective method to improve some of the properties of wood. It is reported on studies of vacuum thermal-treated wood species by magnetic resonance methods. Wood species such as Scots pine (Pinus sylvestris), birch (Betula pendula), Russian larch (Larix sibirica), Norway spruce (Picea abies), small-leaved lime (Tilia cordata) were vacuum treated by heat at 220 °C with various durations up to 8 h. This selection of wood species was investigated by electron paramagnetic resonance, nuclear magnetic resonance and microscopy methods before and after the thermal treatment. Electron paramagnetic resonance experiments revealed changes in the amount of free radicals in samples with the thermal treatment duration. Additional information on magnetic relaxation of 1H nuclei in samples at room temperature was obtained. Optical microscope analysis helped to detect structural changes in the thermally modified wood. Important properties of wood such as wood hardness and humidity absorption were also studied. The original results that were obtained correlate and complement each other, and clarify changes in the wood structure that appear with the heat treatment

    Exploring Stem Cells and Inflammation in Tendon Repair and Regeneration

    No full text
    Tendon injuries are frequent and are responsible for substantial morbidity both in sports and in the workplace. Despite the endogenous mechanisms of tendon repair and regeneration, tendon healing upon injury is slow and often insufficient to restore complete biomechanics functionality. Inflammation has a pivotal role in tendon healing and failed healing responses contribute to the progression of tendinopathies. However, the molecular and cellular mechanisms involved are poorly understood requiring further insights. During inflammation, bioactive molecules such as cytokines secreted locally at the injury site, influence resident stem cells that contribute as modulatory agents over the niche towards homeostasis, holding great promise as therapeutic agents for tendon pathological conditions associated to unresolved inflammation and failed healing. This review overviews the role of cytokines and resident cells, focusing on the participation of tendon stem cell population in inflammation and tendon healing upon injury and their potential action in resolution of pathological conditionsFundação para a Ciência e Tecnologia (FCT) for the doctoral grant PD/BD/128089/2016, the project NORTE-01-0145-FEDER-000021 supported by Norte Portugal Regional Operational Programme (NORTE 2020) and HORIZON 2020 under the TEAMING GRANT agreement No 739572 – The Discoveries CTRinfo:eu-repo/semantics/publishedVersio

    Eukaryotic DNA methylation

    No full text
    corecore