56 research outputs found
Analysis of cancer metabolism with high-throughput technologies
<p>Abstract</p> <p>Background</p> <p>Recent advances in genomics and proteomics have allowed us to study the nuances of the Warburg effect – a long-standing puzzle in cancer energy metabolism – at an unprecedented level of detail. While modern next-generation sequencing technologies are extremely powerful, the lack of appropriate data analysis tools makes this study difficult. To meet this challenge, we developed a novel application for comparative analysis of gene expression and visualization of RNA-Seq data.</p> <p>Results</p> <p>We analyzed two biological samples (normal human brain tissue and human cancer cell lines) with high-energy, metabolic requirements. We calculated digital topology and the copy number of every expressed transcript. We observed subtle but remarkable qualitative and quantitative differences between the citric acid (TCA) cycle and glycolysis pathways. We found that in the first three steps of the TCA cycle, digital expression of aconitase 2 (<it>ACO2</it>) in the brain exceeded both citrate synthase (<it>CS</it>) and isocitrate dehydrogenase 2 (<it>IDH2</it>), while in cancer cells this trend was quite the opposite. In the glycolysis pathway, all genes showed higher expression levels in cancer cell lines; and most notably, digital gene expression of glyceraldehyde-3-phosphate dehydrogenase (<it>GAPDH</it>) and enolase (<it>ENO</it>) were considerably increased when compared to the brain sample.</p> <p>Conclusions</p> <p>The variations we observed should affect the rates and quantities of ATP production. We expect that the developed tool will provide insights into the subtleties related to the causality between the Warburg effect and neoplastic transformation. Even though we focused on well-known and extensively studied metabolic pathways, the data analysis and visualization pipeline that we developed is particularly valuable as it is global and pathway-independent.</p
Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications
<p>Abstract</p> <p>Background</p> <p>The need for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering.</p> <p>Results</p> <p>In this work we performed whole genome high-throughput sequencing and annotation can be used to identify single nucleotide polymorphisms (SNPs) between <it>Saccharomyces cerevisiae </it>strains S288c and CEN.PK113-7D. The yeast strain S288c was the first eukaryote sequenced, serving as the reference genome for the <it>Saccharomyces </it>Genome Database, while CEN.PK113-7D is a preferred laboratory strain for industrial biotechnology research. A total of 13,787 high-quality SNPs were detected between both strains (reference strain: S288c). Considering only metabolic genes (782 of 5,596 annotated genes), a total of 219 metabolism specific SNPs are distributed across 158 metabolic genes, with 85 of the SNPs being nonsynonymous (e.g., encoding amino acid modifications). Amongst metabolic SNPs detected, there was pathway enrichment in the galactose uptake pathway (<it>GAL1</it>, <it>GAL10</it>) and ergosterol biosynthetic pathway (<it>ERG8</it>, <it>ERG9</it>). Physiological characterization confirmed a strong deficiency in galactose uptake and metabolism in S288c compared to CEN.PK113-7D, and similarly, ergosterol content in CEN.PK113-7D was significantly higher in both glucose and galactose supplemented cultivations compared to S288c. Furthermore, DNA microarray profiling of S288c and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that genotype to phenotype correlations are manifested post-transcriptionally or post-translationally either through protein concentration and/or function.</p> <p>Conclusions</p> <p>With an intensifying need for microbial cell factories that produce a wide array of target compounds, whole genome high-throughput sequencing and annotation for SNP detection can aid in better reducing and defining the metabolic landscape. This work demonstrates direct correlations between genotype and phenotype that provides clear and high-probability of success metabolic engineering targets. The genome sequence, annotation, and a SNP viewer of CEN.PK113-7D are deposited at <url>http://www.sysbio.se/cenpk</url>.</p
Comprehensive Structural and Substrate Specificity Classification of the Saccharomyces cerevisiae Methyltransferome
Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation in S. cerevisiae by conducting a comprehensive structural and functional survey of all the methyltransferases encoded in its genome. Using distant homology detection and fold recognition, we found that the S. cerevisiae methyltransferome comprises 86 MTases (53 well-known and 33 putative with unknown substrate specificity). Structural classification of their catalytic domains shows that these enzymes may adopt nine different folds, the most common being the Rossmann-like. We also analyzed the domain architecture of these proteins and identified several new domain contexts. Interestingly, we found that the majority of MTase genes are periodically expressed during yeast metabolic cycle. This finding, together with calculated isoelectric point, fold assignment and cellular localization, was used to develop a novel approach for predicting substrate specificity. Using this approach, we predicted the general substrates for 24 of 33 putative MTases and confirmed these predictions experimentally in both cases tested. Finally, we show that, in S. cerevisiae, methylation is carried out by 34 RNA MTases, 32 protein MTases, eight small molecule MTases, three lipid MTases, and nine MTases with still unknown substrate specificity
An internal region of the peroxisomal membrane protein PMP47 is essential for sorting to peroxisomes
- …