25 research outputs found

    Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the greatest challenges facing biomedical research is the integration and sharing of vast amounts of information, not only for individual researchers, but also for the community at large. Agent Based Modeling (ABM) can provide a means of addressing this challenge via a unifying translational architecture for dynamic knowledge representation. This paper presents a series of linked ABMs representing multiple levels of biological organization. They are intended to translate the knowledge derived from in vitro models of acute inflammation to clinically relevant phenomenon such as multiple organ failure.</p> <p>Results and Discussion</p> <p>ABM development followed a sequence starting with relatively direct translation from in-vitro derived rules into a cell-as-agent level ABM, leading on to concatenated ABMs into multi-tissue models, eventually resulting in topologically linked aggregate multi-tissue ABMs modeling organ-organ crosstalk. As an underlying design principle organs were considered to be functionally composed of an epithelial surface, which determined organ integrity, and an endothelial/blood interface, representing the reaction surface for the initiation and propagation of inflammation. The development of the epithelial ABM derived from an in-vitro model of gut epithelial permeability is described. Next, the epithelial ABM was concatenated with the endothelial/inflammatory cell ABM to produce an organ model of the gut. This model was validated against in-vivo models of the inflammatory response of the gut to ischemia. Finally, the gut ABM was linked to a similarly constructed pulmonary ABM to simulate the gut-pulmonary axis in the pathogenesis of multiple organ failure. The behavior of this model was validated against in-vivo and clinical observations on the cross-talk between these two organ systems</p> <p>Conclusion</p> <p>A series of ABMs are presented extending from the level of intracellular mechanism to clinically observed behavior in the intensive care setting. The ABMs all utilize cell-level agents that encapsulate specific mechanistic knowledge extracted from in vitro experiments. The execution of the ABMs results in a dynamic representation of the multi-scale conceptual models derived from those experiments. These models represent a qualitative means of integrating basic scientific information on acute inflammation in a multi-scale, modular architecture as a means of conceptual model verification that can potentially be used to concatenate, communicate and advance community-wide knowledge.</p

    Co-expression of nuclear and cytoplasmic HMGB1 is inversely associated with infiltration of CD45RO+ T cells and prognosis in patients with stage IIIB colon cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The intratumoral infiltration of T cells, especially memory T cells, is associated with a favorable prognosis in early colorectal cancers. However, the mechanism underlying this process remains elusive. This study examined whether high-mobility group box 1 (HMGB1), a damage-associated molecular pattern (DAMP) molecule, is involved in the infiltration of T cells and disease progression in locally advanced colon cancer.</p> <p>Methods</p> <p>Seventy-two cases of pathologically-confirmed specimens were obtained from patients with stage IIIB (T3N1M0) colon cancer who underwent radical resection between January 1999 and May 2002 at the Cancer Center of Sun Yat-Sen University. The density of tumor-infiltrating lymphocytes (TILs) within the tumor tissue and the expression of HMGB1 in the cancer cells were examined via immunohistochemical analysis. The phenotype of CD45RO+ cells was confirmed using a flow cytometric assay. The association between HMGB1 expression, the density of TILs, and the 5-year survival rate were analyzed.</p> <p>Results</p> <p>The density of CD45RO+ T cells within the tumor was independently prognostic, although a higher density of CD3+ T cells was also associated with a favorable prognosis. More importantly, the expression of HMGB1 was observed in both the nucleus and the cytoplasm (co-expression pattern) in a subset of colon cancer tissues, whereas nuclear-only expression of HMGB1 (nuclear expression pattern) existed in most of the cancer tissues and normal mucosa. The co-expression pattern of HMGB1 in colon cancer cells was inversely associated with the infiltration of both CD3+ and CD45RO+ T cells and 5-year survival rates.</p> <p>Conclusions</p> <p>This study revealed that the co-expression of HMGB1 is inversely associated with the infiltration of CD45RO+ T cells and prognosis in patients with stage IIIB colon cancer, indicating that the distribution patterns of HMGB1 might contribute to the progression of colon cancer via modulation of the local immune response.</p

    Exposure to solute stress affects genome-wide expression but not the polycyclic aromatic hydrocarbon-degrading activity of Sphingomonas sp. strain LH128 in biofilms.

    No full text
    Members of the genus Sphingomonas are important catalysts for removal of polycyclic aromatic hydrocarbons (PAHs) in soil, but their activity can be affected by various stress factors. This study examines the physiological and genome-wide transcription response of the phenanthrene-degrading Sphingomonas sp. strain LH128 in biofilms to solute stress (invoked by 450 mM NaCl solution), either as an acute (4-h) or a chronic (3-day) exposure. The degree of membrane fatty acid saturation was increased as a response to chronic stress. Oxygen consumption in the biofilms and phenanthrene mineralization activities of biofilm cells were, however, not significantly affected after imposing either acute or chronic stress. This finding was in agreement with the transcriptomic data, since genes involved in PAH degradation were not differentially expressed in stressed conditions compared to nonstressed conditions. The transcriptomic data suggest that LH128 adapts to NaCl stress by (i) increasing the expression of genes coping with osmolytic and ionic stress such as biosynthesis of compatible solutes and regulation of ion homeostasis, (ii) increasing the expression of genes involved in general stress response, (iii) changing the expression of general and specific regulatory functions, and (iv) decreasing the expression of protein synthesis such as proteins involved in motility. Differences in gene expression between cells under acute and chronic stress suggest that LH128 goes through changes in genome-wide expression to fully adapt to NaCl stress, without significantly changing phenanthrene degrading activity

    Inhibition of High-Mobility Group Box 1 Protein (HMGB1) Enhances Bacterial Clearance and Protects against Pseudomonas Aeruginosa Pneumonia in Cystic Fibrosis

    No full text
    Pulmonary infection with Pseudomonas aeruginosa and neutrophilic lung inflammation significantly contribute to morbidity and mortality in cystic fibrosis (CF). High-mobility group box 1 protein (HMGB1), a ubiquitous DNA binding protein that promotes inflammatory tissue injury, is significantly elevated in CF sputum. However, its mechanistic and potential therapeutic implications in CF were previously unknown. We found that HMGB1 levels were significantly elevated in bronchoalveolar lavage fluids (BALs) of CF patients and cystic fibrosis transmembrane conductance regulator (CFTR )−/− mice. Neutralizing anti-HMGB1 monoclonal antibody (mAb) conferred significant protection against P. aeruginosa–induced neutrophil recruitment, lung injury and bacterial infection in both CFTR−/− and wild-type mice. Alveolar macrophages isolated from mice treated with anti-HMGB1 mAb had improved phagocytic activity, which was suppressed by direct exposure to HMGB1. In addition, BAL from CF patients significantly impaired macrophage phagocytotic function, and this impairment was attenuated by HMGB1-neutralizing antibodies. The HMGB1-mediated suppression of bacterial phagocytosis was attenuated in macrophages lacking toll-like receptor (TLR)-4, suggesting a critical role for TLR4 in signaling HMGB1-mediated macrophage dysfunction. These studies demonstrate that the elevated levels of HMGB1 in CF airways are critical for neutrophil recruitment and persistent presence of P. aeruginosa in the lung. Thus, HMGB1 may provide a therapeutic target for reducing bacterial infection and lung inflammation in CF
    corecore