9 research outputs found

    The type of the functional cardiovascular response to upright posture is associated with arterial stiffness: a cross-sectional study in 470 volunteers

    Get PDF
    Background: In a cross-sectional study we examined whether the haemodynamic response to upright posture could be divided into different functional phenotypes, and whether the observed phenotypes were associated with known determinants of cardiovascular risk.Methods: Volunteers (n = 470) without medication with cardiovascular effects were examined using radial pulse wave analysis, whole-body impedance cardiography, and heart rate variability analysis. Based on the passive head-up tilt induced changes in systemic vascular resistance and cardiac output, the principal determinants of blood pressure, a cluster analysis was performed.Results: The haemodynamic response could be clustered into 3 categories: upright increase in vascular resistance and decrease in cardiac output were greatest in the first (+ 45 % and -27 %, respectively), smallest in the second (+ 2 % and -2 %, respectively), and intermediate (+ 22 % and -13 %, respectively) in the third group. These groups were named as 'constrictor' (n = 109), 'sustainer' (n = 222), and 'intermediate' (n = 139) phenotypes, respectively. The sustainers were characterized by male predominance, higher body mass index, blood pressure, and also by higher pulse wave velocity, an index of large arterial stiffness, than the other groups (p < 0.01 for all). Heart rate variability analysis showed higher supine and upright low frequency/high frequency (LF/HF) ratio in the sustainers than constrictors, indicating increased sympathovagal balance. Upright LF/HF ratio was also higher in the sustainer than intermediate group. In multivariate analysis, independent explanatory factors for higher pulse wave velocity were the sustainer (p < 0.022) and intermediate phenotypes (p < 0.046), age (p < 0.001), body mass index (p < 0.001), and hypertension (p < 0.001).Conclusions: The response to upright posture could be clustered to 3 functional phenotypes. The sustainer phenotype, with smallest upright decrease in cardiac output and highest sympathovagal balance, was independently associated with increased large arterial stiffness. These results indicate an association of the functional haemodynamic phenotype with an acknowledged marker of cardiovascular risk

    A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape

    Get PDF
    Large consortia have revealed hundreds of genetic loci associated with anthropometric traits, one trait at a time. We examined whether genetic variants affect body shape as a composite phenotype that is represented by a combination of anthropometric traits. We developed an approach that calculates averaged PCs (AvPCs) representing body shape derived from six anthropometric traits (body mass index, height, weight, waist and hip circumference, waist-to-hip ratio). The first four AvPCs explain >99% of the variability, are heritable, and associate with cardiometabolic outcomes. We performed genome-wide association analyses for each body shape composite phenotype across 65 studies and meta-analysed summary statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159 and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of using multiple traits to define complex phenotypes for discovery, which are not captured by single-trait analyses, and may shed light onto new pathways

    A saturated map of common genetic variants associated with human height

    Get PDF
    Common single-nucleotide polymorphisms (SNPs) are predicted to collectively explain 40-50% of phenotypic variation in human height, but identifying the specific variants and associated regions requires huge sample sizes(1). Here, using data from a genome-wide association study of 5.4 million individuals of diverse ancestries, we show that 12,111 independent SNPs that are significantly associated with height account for nearly all of the common SNP-based heritability. These SNPs are clustered within 7,209 non-overlapping genomic segments with a mean size of around 90 kb, covering about 21% of the genome. The density of independent associations varies across the genome and the regions of increased density are enriched for biologically relevant genes. In out-of-sample estimation and prediction, the 12,111 SNPs (or all SNPs in the HapMap 3 panel(2)) account for 40% (45%) of phenotypic variance in populations of European ancestry but only around 10-20% (14-24%) in populations of other ancestries. Effect sizes, associated regions and gene prioritization are similar across ancestries, indicating that reduced prediction accuracy is likely to be explained by linkage disequilibrium and differences in allele frequency within associated regions. Finally, we show that the relevant biological pathways are detectable with smaller sample sizes than are needed to implicate causal genes and variants. Overall, this study provides a comprehensive map of specific genomic regions that contain the vast majority of common height-associated variants. Although this map is saturated for populations of European ancestry, further research is needed to achieve equivalent saturation in other ancestries.A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants

    52 Genetic Loci Influencing Myocardial Mass

    No full text

    The Role of Carnitine in Cell Metabolism

    No full text

    Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks

    No full text

    Metabolic Effects of Alcohol on the Liver

    No full text
    corecore