481 research outputs found

    Post-Laser Twin Anemia Polycythemia Sequence: Diagnosis, Management, and Outcome in an International Cohort of 164 Cases.

    Get PDF
    The aim of this study was to investigate the management and outcome in the post-laser twin anemia polycythemia sequence (TAPS). Data of the international TAPS Registry, collected between 2014 and 2019, were used for this study. The primary outcomes were perinatal mortality and severe neonatal morbidity. Secondary outcomes included a risk factor analysis for perinatal mortality and severe neonatal morbidity. A total of 164 post-laser TAPS pregnancies were included, of which 92% (151/164) were diagnosed antenatally and 8% (13/164) postnatally. The median number of days between laser for TTTS and detection of TAPS was 14 (IQR: 7-28, range: 1-119). Antenatal management included expectant management in 43% (62/151), intrauterine transfusion with or without partial exchange transfusion in 29% (44/151), repeated laser surgery in 15% (24/151), selective feticide in 7% (11/151), delivery in 6% (9/151), and termination of pregnancy in 1% (1/151). The median gestational age (GA) at birth was 31.7 weeks (IQR: 28.6-33.7; range: 19.0-41.3). The perinatal mortality rate was 25% (83/327) for the total group, 37% (61/164) for donors, and 14% (22/163) for recipients (p < 0.001). Severe neonatal morbidity was detected in 40% (105/263) of the cohort and was similar for donors (43%; 51/118) and recipients (37%; 54/145), p = 0.568. Independent risk factors for spontaneous perinatal mortality were antenatal TAPS Stage 4 (OR = 3.4, 95%CI 1.4-26.0, p = 0.015), TAPS donor status (OR = 4.2, 95%CI 2.1-8.3, p < 0.001), and GA at birth (OR = 0.8, 95%CI 0.7-0.9, p = 0.001). Severe neonatal morbidity was significantly associated with GA at birth (OR = 1.5, 95%CI 1.3-1.7, p < 0.001). In conclusion, post-laser TAPS most often occurs within one month after laser for TTTS, but may develop up to 17 weeks after initial surgery. Management is mostly expectant, but varies greatly, highlighting the lack of consensus on the optimal treatment and heterogeneity of the condition. Perinatal outcome is poor, particularly due to the high rate of perinatal mortality in donor twins

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one

    Criteria for evaluation of disease extent by 123I-metaiodobenzylguanidine scans in neuroblastoma: a report for the International Neuroblastoma Risk Group (INRG) Task Force

    Get PDF
    BackgroundNeuroblastoma is an embryonic tumour of the sympathetic nervous system, metastatic in half of the patients at diagnosis, with a high preponderance of osteomedullary disease, making accurate evaluation of metastatic sites and response to therapy challenging. Metaiodobenzylguanidine (mIBG), taken into cells via the norepinephrine transporter, provides a sensitive and specific method of assessing tumour in both soft tissue and bone sites. The goal of this report was to develop consensus guidelines for the use of mIBG scans in staging, response assessment and surveillance in neuroblastoma.MethodsThe International Neuroblastoma Risk Group (INRG) Task Force, including a multidisciplinary group in paediatric oncology of North and South America, Europe, Oceania and Asia, formed a subcommittee on metastatic disease evaluation, including expert nuclear medicine physicians and oncologists, who developed these guidelines based on their experience and the medical literature, with approval by the larger INRG Task Force.ResultsGuidelines for patient preparation, radiotracer administration, techniques of scanning including timing, energy, specific views, and use of single photon emission computed tomography are included. Optimal timing of scans in relation to therapy and for surveillance is reviewed. Validated semi-quantitative scoring methods in current use are reviewed, with recommendations for use in prognosis and response evaluation.ConclusionsMetaiodobenzylguanidine scans are the most sensitive and specific method of staging and response evaluation in neuroblastoma, particularly when used with a semi-quantitative scoring method. Use of the optimal techniques for mIBG in staging and response, including a semi-quantitative score, is essential for evaluation of the efficacy of new therapy

    Novel Plasmids and Resistance Phenotypes in Yersinia pestis: Unique Plasmid Inventory of Strain Java 9 Mediates High Levels of Arsenic Resistance

    Get PDF
    Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium

    Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV

    Get PDF
    Peer reviewe

    Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Study of double parton scattering using W+2-jet events in proton-proton collisions at √s=7 TeV

    Get PDF
    Peer reviewe

    Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at √s=8 Tev

    Get PDF
    Peer reviewe

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore