6 research outputs found

    Glycocardiolipin modulates the surface interaction of the proton pumped by bacteriorhodopsin in purple membrane preparations

    Get PDF
    AbstractGlycocardiolipin is an archaeal analogue of mitochondrial cardiolipin, having an extraordinary affinity for bacteriorhodopsin, the photoactivated proton pump in the purple membrane of Halobacterium salinarum. Here purple membranes have been isolated by osmotic shock from either cells or envelopes of Hbt. salinarum. We show that purple membranes isolated from envelopes have a lower content of glycocardiolipin than standard purple membranes isolated from cells. The properties of bacteriorhodopsin in the two different purple membrane preparations are compared; although some differences in the absorption spectrum and the kinetic of the dark adaptation process are present, the reduction of native membrane glycocardiolipin content does not significantly affect the photocycle (M-intermediate rise and decay) as well as proton pumping of bacteriorhodopsin. However, interaction of the pumped proton with the membrane surface and its equilibration with the aqueous bulk phase are altered

    Cardiolipin is associated with the terminal oxidase of an extremely halophilic archaeon

    No full text
    Membranes having an a high content of cardiolipin were isolated from an extremely halophilic archaeon Halorubrum sp. Absorbance difference spectra of detergent-solubilized plasma membranes reduced by dithionite suggested the presence of b-type cytochromes. Non-denaturing gel electrophoresis revealed only one fraction having TMPD-oxidase activity in which cardiolipin was the major lipid component. The electroeluted fraction showed a cytochrome c oxidase activity characterized by the reduced minus oxidized difference spectra as a terminal heme-copper oxidase. The cytochrome c oxidase activity of the archaeal cardiolipin-rich membranes was inhibited by the cardiolipin-specific fluorescent marker 10-N-nonyl acridine orange (NAO) in a dose-dependent manner. The results indicate that an archaeal analogue of cardiolipin is tightly associated to archaeal terminal oxidases and is required for its optimal functioning

    The light-activated proton pump Bop I of the archaeon Haloquadratum walsbyi.

    No full text
    We have isolated and characterized the light-driven proton pump Bop I from the ultrathin square archaeon Haloquadratum walsbyi, the most abundant component of the dense microbial community inhabiting hypersaline environments. The disruption of cells by hypo-osmotic shock yielded Bop I retinal protein highly enriched membranes, which contain one main 27 kDa protein band together with a high content of the carotenoid bacterioruberin. Light-induced pH changes were observed in suspensions of Bop I retinal protein-enriched membranes under sustained illumination. Solubilization of H. walsbyi cells with Triton X-100, followed by phenyl-Sepharose chromatography, resulted in isolation of two purified Bop I retinal protein bands; mass spectrometry analysis revealed that the Bop I was present as only protein in both the bands. The study of light/dark adaptations, M-decay kinetics, responses to titration with alkali in the dark and endogenous lipid compositions of the two Bop I retinal protein bands showed functional differences that could be attributed to different protein aggregation states. Proton-pumping activity of Bop I during the photocycle was observed in liposomes constituted of archaeal lipids. Similarities and differences of Bop I with other archaeal proton-pumping retinal proteins will be discussed
    corecore