14 research outputs found
Non-target impact of fungicide tetraconazole on microbial communities in soils with different agricultural management
Effect of the fungicide tetraconazole on microbial community in silt loam soils from orchard with long history of triazole application and from grassland with no known history of fungicide usage was investigated. Triazole tetraconazole that had never been used on these soils before was applied at the field rate and at tenfold the FR. Response of microbial communities to tetraconazole was investigated during 28-day laboratory experiment by determination of changes in their biomass and structure (phospholipid fatty acids method—PLFA), activity (fluorescein diacetate hydrolysis—FDA) as well as changes in genetic (DGGE) and functional (Biolog) diversity. Obtained results indicated that the response of soil microorganisms to tetraconazole depended on the management of the soils. DGGE patterns revealed that both dosages of fungicide affected the structure of bacterial community and the impact on genetic diversity and richness was more prominent in orchard soil. Values of stress indices—the saturated/monounsaturated PLFAs ratio and the cyclo/monounsaturated precursors ratio, were almost twice as high and the Gram-negative/Gram-positive ratio was significantly lower in the orchard soil compared with the grassland soil. Results of principal component analysis of PLFA and Biolog profiles revealed significant impact of tetraconazole in orchard soil on day 28, whereas changes in these profiles obtained for grassland soil were insignificant or transient. Obtained results indicated that orchards soil seems to be more vulnerable to tetraconazole application compared to grassland soil. History of pesticide application and agricultural management should be taken into account in assessing of environmental impact of studied pesticides. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10646-016-1661-7) contains supplementary material, which is available to authorized users
Business groups and corporate responsibility for the public good
This paper analyses the relationship between Business Groups as a distinct way of organizing economic activities and their relation to the public good. We first analyze the phenomenon of Business Groups and discuss some of their core features. Subsequently, the paper moves to analyzing the existing literature on Business Groups and Corporate Social Responsibility (CSR) as the most common label for the topic of this Special Issue. Subsequently, specific peculiarities of Business Groups in the context of CSR and their contribution to the public good are fleshed out. Based on this analysis, the paper delineates some implications for the field of CSR and the wider debate on the nature of the firm. We close with some perspectives for future research
Rhizobium-legume symbiosis in the absence of Nod factors: two possible scenarios with or without the T3SS
International audienceThe occurrence of alternative Nod factor (NF)-independent symbiosis between legumes and rhizobia was first demonstrated in some Aeschynomene species that are nodulated by photosynthetic bradyrhizobia lacking the canonical nodABC genes. In this study, we revealed that a large diversity of non-photosynthetic bradyrhizobia, including B. elkanii, was also able to induce nodules on the NF-independent Aeschynomene species, A. indica. Using cytological analysis of the nodules and the nitrogenase enzyme activity as markers, a gradient in the symbiotic interaction between bradyrhizobial strains and A. indica could be distinguished. This ranged from strains that induced nodules that were only infected intercellularly to rhizobial strains that formed nodules in which the host cells were invaded intracellularly and that displayed a weak nitrogenase activity. In all non-photosynthetic bradyrhizobia, the type III secretion system (T3SS) appears required to trigger nodule organogenesis. In contrast, genome sequence analysis revealed that apart from a few exceptions, like the Bradyrhizobium ORS285 strain, photosynthetic bradyrhizobia strains lack a T3SS. Furthermore, analysis of the symbiotic properties of an ORS285 T3SS mutant revealed that the T3SS could have a positive or negative role for the interaction with NF-dependent Aeschynomene species, but that it is dispensable for the interaction with all NF-independent Aeschynomene species tested. Taken together, these data indicate that two NF-independent symbiotic processes are possible between legumes and rhizobia: one dependent on a T3SS and one using a so far unknown mechanism
Influence of agricultural practices and seasons on the abundance and community structure of culturable pseudomonads in soils under no-till management in Argentina
Background and aims: Pseudomonas are common inhabitants of rhizospheres and soils, and it is known that soil types and crops species influence their population density and structure. 20x106 ha are cultivated under no-tillage in Argentina and there is a need to find new biologically-based soil quality indexes to distinguish between sustainable and non-sustainable agricultural practices. Pseudomonads abundance and community structure were analyzed in no-till soils with different agricultural practices, in productive fields along 400 km of Argentinean Pampas. Methods: We sampled soils and root systems from agricultural plots in which sustainable or non-sustainable agricultural practices have been applied. Samples were collected in summer and winter during 2010 and 2011. Culturable fluorescent and total pseudomonads were enumerated by plating on Gould´s selective medium S1. Colonies from these plates served as DNA source to carry out PCR-RFLP community structure analysis of the pseudomonads-specific marker genes oprF and gacA. Results: Abundance of total and fluorescent culturable pseudomonads in bulk soils was influenced by seasonal changes and agricultural practices. Rhizospheric counts from the same crop were affected by agricultural treatments. Also, crop species influenced pseudomonads density in the rhizosphere. Combined PCR-RFLP profile of both genes showed a seasonal grouping of samples. Conclusions: Sustainable soil management seems to favor pseudomonads development in soils, favoring root colonization of crops from those plots. Crop species influence total pseudomonads load of rhizospheres and its community structure. Total or relative pseudomonads load could function as soil quality indicator of good agricultural practices.Fil: Agaras, Betina Cecilia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Interacciones Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Wall, Luis Gabriel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Interacciones Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Valverde, Claudio Fabián. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Investigación en Interacciones Biológicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin