39 research outputs found

    Intracorneal bacterial colonization in a crystalline pattern

    Full text link
    We report the case of a 78-year-old woman who developed an intrastromal bacterial colonization 22 months after penetrating keratoplasty. Slit-lamp examination revealed discrete, finely branched, fernlike stromal opacities, which were histopathologically found to be large intrastromal aggregates of gram-positive cocci with almost no inflammatory cell response.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47391/1/417_2005_Article_BF02143065.pd

    Документы архива Учреждения образования «Белорусский государственный медицинский университет» за 1976 – 2013 гг.: организация работ по комплектованию, обеспечению сохранности и использованию : реферат к дипломной работе / Ольга Викторовна Лобач; БГУ, Исторический факультет, Кафедра источниковедения; науч. рук. Яцкевич Д.Л.

    Get PDF
    Determining the underlying cause of persistent eosinophilia is important for effective clinical management but remains a diagnostic challenge in many cases. We identified STAT5B N642H, an established oncogenic mutation, in 27/1715 (1.6%) cases referred for investigation of eosinophilia. Of the 27 mutated cases, a working diagnosis of hypereosinophilic syndrome (HES; n = 7) or a myeloid neoplasm with eosinophilia (n = 20) had been made prior to the detection of STAT5B N642H. Myeloid panel analysis identified a median of 2 additional mutated genes (range 0–4) with 4 cases having STAT5B N642H as a sole abnormality. STAT5B N642H was absent in cultured T cells of 4/4 positive cases. Individuals with SF3B1 mutations (9/27; 33%) or STAT5B N642H as a sole abnormality had a markedly better overall survival compared to cases with other additional mutations (median 65 months vs. 14 months; hazard ratio = 8.1; P < 0.001). The overall survival of STAT5B-mutated HES cases was only 30 months, suggesting that these cases should be reclassified as chronic eosinophilic leukemia, not otherwise specified (CEL-NOS). The finding of STAT5B N642H as a recurrent mutation in myeloid neoplasia with eosinophilia provides a new diagnostic and prognostic marker as well as a potential target for therapy

    Low-Dose Total Skin Electron Beam Therapy Combined With Mogamulizumab for Refractory Mycosis Fungoides and Sézary Syndrome

    No full text
    Purpose: Management of patients with refractory mycosis fungoides and Sézary syndrome (SS) is often challenging, as available therapies lack durable response and consistent activity across disease compartments. Combining low-dose total skin electron beam therapy (LD-TSEBT) upfront with mogamulizumab could optimize the clinical outcome of these patients. LD-TSEBT is effective in clearing skin disease, and mogamulizumab is an antitumor immunotherapy with long-term tolerability, suggesting its potential as a maintenance therapy after maximal response. We examine the combination regimen in patients with SS who were previously treated. Methods and Materials: Two patients with SS were treated with combination LD-TSEBT and mogamulizumab. Both patients received mogamulizumab 1 mg/kg weekly × 4 and then bi-weekly; LD-TSEBT (12 Gy) was initiated within 2 days of starting mogamulizumab and given over 2-3 weeks. Safety and clinical response were evaluated. Results: Total skin electron beam therapy plus mogamulizumab (TSE-Moga) was well-tolerated without any unanticipated adverse events. Patient 1 (T4N2bM0B2) was a 63-year-old woman with 4 prior systemic therapies; time to global response with TSE-Moga was 9 weeks. Patient 2 (T4NxM0B2) was a 75-year-old man with 5 prior systemic therapies; time to global response was 4 weeks. Both patients lacked global response to their prior therapies but achieved global complete response (blood and skin) with TSE-Moga. After a follow-up of 72 weeks and 43 weeks, respectively, global complete response continued. Conclusions: TSE-Moga demonstrated excellent tolerability and promising clinical activity with ongoing global complete responses in 2 patients with refractory SS. This encouraging experience supports our ongoing clinical trial evaluating the efficacy and safety of TSE-Moga in mycosis fungoides and SS

    High-Throughput, Fast, and Sensitive Immunopeptidomics Sample Processing for Mass Spectrometry.

    No full text
    Comprehensive knowledge of the HLA class I and class II peptides presented to T cells is crucial for designing innovative therapeutics against cancer and other diseases. So far, methodologies for recovery of HLA class I and II peptides for subsequent mass spectrometry-based analysis have been a major limitation. In this chapter we describe a detailed protocol for a high-throughput, reproducible, and sensitive immunoaffinity-purification of HLA-I and HLA-II peptides from up to 96 samples in a plate format, suitable for tissue samples and cell lines. Our methodology reduces sample handling, has a competitive peptide yield, and can be completed within 5 h. This simplified pipeline is applicable for basic and clinical applications
    corecore