26 research outputs found

    Effect of Dietary Zinc Oxide on Morphological Characteristics, Mucin Composition and Gene Expression in the Colon of Weaned Piglets

    Get PDF
    The trace element zinc is often used in the diet of weaned piglets, as high doses have resulted in positive effects on intestinal health. However, the majority of previous studies evaluated zinc supplementations for a short period only and focused on the small intestine. The hypothesis of the present study was that low, medium and high levels of dietary zinc (57, 164 and 2,425 mg Zn/kg from zinc oxide) would affect colonic morphology and innate host defense mechanisms across 4 weeks post-weaning. Histological examinations were conducted regarding the colonic morphology and neutral, acidic, sialylated and sulphated mucins. The mRNA expression levels of mucin (MUC) 1, 2, 13, 20, toll-like receptor (TLR) 2, 4, interleukin (IL)-1β, 8, 10, interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β) were also measured. The colonic crypt area increased in an age-depending manner, and the greatest area was found with medium concentration of dietary zinc. With the high concentration of dietary zinc, the number of goblet cells containing mixed neutral-acidic mucins and total mucins increased. Sialomucin containing goblet cells increased age-dependently. The expression of MUC2 increased with age and reached the highest level at 47 days of age. The expression levels of TLR2 and 4 decreased with age. The mRNA expression of TLR4 and the pro-inflammatory cytokine IL-8 were down-regulated with high dietary zinc treatment, while piglets fed with medium dietary zinc had the highest expression. It is concluded that dietary zinc level had a clear impact on colonic morphology, mucin profiles and immunological traits in piglets after weaning. Those changes might support local defense mechanisms and affect colonic physiology and contribute to the reported reduction of post-weaning diarrhea

    Vitamin E and selenium plasma concentrations in weanling pigs under field conditions in Norwegian pig herds

    Get PDF
    BACKGROUND: The status of α-tocopherol (vit E) and selenium (Se) has been shown to influence disease resistance in pigs, and may be important for the health of weanling pigs. METHODS: Plasma levels of both vit E and Se were followed in weanling pigs under field conditions in six Norwegian pig herds. Plasma vit E and Se were measured in 3 sows from each herd and 4 piglets in the litter of each sow at the day before weaning (day -1); and in the same piglets at days 4, 8 and 18 after weaning. RESULTS: Mean plasma vit E was 4.0 μg/ml in the sows and 2.6 μg/ml in the piglets at day -1, fell to 1.6 μg/ml in the weanling pigs at day 4, and remained low. Mean plasma Se was 0.22 μg/g in the sows and 0.08 μg/g in the piglets at day -1, rose to 0.10 μg/g in the weanlings at day 4, and continued rising. CONCLUSION: The results suggest that vit E and Se supplementation to piglets and weanling pigs in Norway may still be suboptimal, but that levels of the two nutrients partially compensate for each other in the weaning period

    Effects of liquid metabolite combinations produced by Lactobacillus plantarum on growth performance, faeces characteristics, intestinal morphology and diarrhoea incidence in postweaning piglets

    Get PDF
    A study was carried out to investigate the effects of feeding liquid metabolite combinations produced by Lactobacillus plantarum strains on growth performance, diarrhoea incidence, faecal pH, microfloral counts, short-chain fatty acids (SCFA) and intestinal villus height and crypt depth of postweaning piglets. A total of 120 piglets (26 days old) were randomly assigned evenly into five treatment groups treated with same basal diet: (1) −ve control (free antibiotic); (2) + ve control (0.03% of chlortetracycline); (3) Com 1 (0.3% metabolite of TL1, RG11 and RI11 strains); (4) Com 2 (0.3% metabolite of TL1, RG14 and RS5 strains); (5) Com 3 (0.3% metabolite of RG11, RG14 and RI11 strains). After 5 weeks, the average daily feed intake was not significantly different (P > 0.05) among the treatments and feed conversion ratio was the highest (P < 0.05) in the −ve control group. In addition, diarrhoea incidence was reduced when piglets were fed with metabolite combinations. Faecal lactic acid bacteria (LAB) counts were significantly higher (P < 0.05) in metabolite treatment groups than in the groups without metabolites. However, the treatment of Com 2 metabolite resulted lower (P < 0.05) faecal pH and Enterobacteriaceae (ENT) than the −ve control group. In contrast, total faecal SCFA of Com 2 were significantly higher (P < 0.05) than the −ve control group. The villus height of duodenum was higher (P < 0.05) in the + ve control and Com 2 groups as compared to −ve control group. The results obtained in this study showed that feeding metabolite combinations could improve growth performance, and increase the population of gut LAB and faecal SCFA of postweaning piglets

    The role of dietary fibre in pig production, with a particular emphasis on reproduction

    Get PDF
    Abstract Fibres from a variety of sources are a common constituent of pig feeds. They provide a means to utilise locally-produced plant materials which are often a by-product of the food or drink industry. The value of a high fibre diet in terms of producing satiety has long been recognised. However the addition of fibre can reduce feed intake, which is clearly detrimental during stages of the production cycle when nutrient needs are high, for example in growing piglets and during lactation. More recently, fibre has been found to promote novel benefits to pig production systems, particularly given the reduction in antimicrobial use world-wide, concern for the welfare of animals fed a restricted diet and the need to ensure that such systems are more environmentally friendly. For example, inclusion of dietary fibre can alter the gut microbiota in ways that could reduce the need for antibiotics, while controlled addition of certain fibre types may reduce nitrogen losses into the environment and so reduce the environmental cost of pig production. Of particular potential value is the opportunity to use crude fibre concentrates as ‘functional’ feed additives to improve young pig growth and welfare. Perhaps the greatest opportunity for the use of high fibre diets is to improve the reproductive efficiency of pigs. Increased dietary fibre before mating improves oocyte maturation, prenatal survival and litter size; providing a consumer-acceptable means of increasing the amount of saleable meat produced per sow. The mechanisms responsible for these beneficial effects remain to be elucidated. However, changes in plasma and follicular fluid concentrations of key hormones and metabolites, as well as effects of the hypothalamic satiety centre on gonadotrophin secretion and epigenetic effects are strong candidates

    Effects of Physical Properties of Feed on Microbial Ecology and Survival of Salmonella enterica Serovar Typhimurium in the Pig Gastrointestinal Tract

    No full text
    A two-by-two factorial experiment with pigs was conducted to study the effect of feed grinding (fine and coarse) and feed processing (pelleted and nonpelleted) on physicochemical properties, microbial populations, and survival of Salmonella enterica serovar Typhimurium DT12 in the gastrointestinal tracts of pigs. Results demonstrated a strong effect of diet on parameters measured in the stomachs of the pigs, whereas the effect was less in the other parts of the gastrointestinal tract. Pigs fed the coarse nonpelleted (C-NP) diet showed more solid gastric content with higher dry matter content than pigs fed the fine nonpelleted (F-NP), coarse pelleted (C-P), or fine pelleted (F-P) diet. Pigs fed the C-NP diet also showed significantly increased number of anaerobic bacteria (
    corecore