11 research outputs found

    Discovery of Radio Emission from the Brown Dwarf LP944-20

    Get PDF
    Brown dwarfs are classified as objects which are not massive enough to sustain nuclear fusion of hydrogen, and are distinguished from planets by their ability to burn deuterium. Old (>10 Myr) brown dwarfs are expected to possess short-lived magnetic fields and, since they no longer generate energy from collapse and accretion, weak radio and X-ray emitting coronae. Several efforts have been undertaken in the past to detect chromospheric activity from the brown dwarf LP944-20 at X-ray and optical wavelengths, but only recently an X-ray flare from this object was detected. Here we report on the discovery of quiescent and flaring radio emission from this source, which represents the first detection of persistent radio emission from a brown dwarf, with luminosities that are several orders of magnitude larger than predicted from an empirical relation between the X-ray and radio luminosities of many stellar types. We show in the context of synchrotron emission, that LP944-20 possesses an unusually weak magnetic field in comparison to active dwarf M stars, which might explain the null results from previous optical and X-ray observations of this source, and the deviation from the empirical relations.Comment: Accepted to Natur

    X-Ray Spectroscopy of Stars

    Full text link
    (abridged) Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma. Coronal structure, its thermal stratification and geometric extent can be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures (partly multiple); some corrections made after proof stag
    corecore