30 research outputs found

    A phase I randomized therapeutic MVA-B vaccination improves the magnitude and quality of the T cell immune responses in HIV-1-infected subjects on HAART

    Get PDF
    Trial Design Previous studies suggested that poxvirus-based vaccines might be instrumental in the therapeutic HIV field. A phase I clinical trial was conducted in HIV-1-infected patients on highly active antiretroviral therapy (HAART), with CD4 T cell counts above 450 cells/mm3 and undetectable viremia. Thirty participants were randomized (2:1) to receive either 3 intramuscular injections of MVA-B vaccine (coding for clade B HIV-1 Env, Gag, Pol and Nef antigens) or placebo, followed by interruption of HAART. Methods The magnitude, breadth, quality and phenotype of the HIV-1-specific T cell response were assayed by intracellular cytokine staining (ICS) in 22 volunteers pre- and post-vaccination. Results MVA-B vaccine induced newly detected HIV-1-specific CD4 T cell responses and expanded pre-existing responses (mostly against Gag, Pol and Nef antigens) that were high in magnitude, broadly directed and showed an enhanced polyfunctionality with a T effector memory (TEM) phenotype, while maintaining the magnitude and quality of the pre-existing HIV-1- specific CD8 T cell responses. In addition, vaccination also triggered preferential CD8+ T cell polyfunctional responses to the MVA vector antigens that increase in magnitude after two and three booster doses

    Sequence-Dependent Structural Dynamics of Primate Adenosine-to-Inosine Editing Substrates

    No full text
    Humans have the highest level of adenosine-to-inosine (A-to-I) editing amongst primates, yet the reasons for this difference remain unclear. Sequence analysis of the Alu Sg elements (A-to-I RNA substrates) corresponding to the Nup50 gene in human, chimp, and rhesus reveals subtle sequence variations surrounding the edit sites. We have developed three constructs that represent human (HuAp5), chimp (ChAp5), and rhesus (RhAp5) Nup50 Alu Sg A-to-I editing substrates. Here, 2-aminopurine (2-Ap) was substituted for edited adenosine (A5) so as to monitor the fluorescence intensity with respect to temperature. UV and steady-state fluorescence (SSF) TM plots indicate that local and global unfolding are coincident, with the human construct displaying a TM of approximately 70 degrees C, compared to 60 degrees C for chimp and 54 degrees C for rhesus. However, time-resolved fluorescence (TRF) resolves three different fluorescence lifetimes that we assign to folded, intermediate(s), and unfolded states. The TRF data fit well to a two-intermediate model, whereby both intermediates (M, J) are in equilibrium with each other, and the folded/unfolded states. Our model suggests that, at 37 degrees C, human state J and the folded state will be the most heavily populated in comparison to the other primate constructs. In order for adenosine deaminase acting on RNA (ADAR) to efficiently dock, a stable duplex must be present that corresponds to the human construct, globally. Next, the enzyme must flip out the base of interest to facilitate the A-to-I conversion; a nucleotide in an intermediate-like position would enhance this conformational change. Our experiments demonstrate that subtle variations in RNA sequence might contribute to the high A-to-I editing levels found in humans

    Position effects influence HIV latency reversal

    No full text
    The main obstacle to curing HIV is the presence of latent proviruses in the bodies of infected patients. The partial success of reactivation therapies suggests that the genomic context of integrated proviruses can interfere with treatment. Here we developed a method called Barcoded HIV ensembles (B-HIVE) to map the chromosomal locations of thousands of individual proviruses while tracking their transcriptional activities in an infected cell population. B-HIVE revealed that, in Jurkat cells, the expression of HIV is strongest close to endogenous enhancers. The insertion site also affects the response to latency-reversing agents, because we found that phytohemagglutinin and vorinostat reactivated proviruses inserted at distinct genomic locations. From these results, we propose that combinations of drugs targeting all areas of the genome will be most effective. Overall, our data suggest that the insertion context of HIV is a critical determinant of the viral response to reactivation therapies.This research was supported by the Government of Catalonia and the Spanish Ministry of Economy and Competitiveness (Plan Nacional BFU2012-37168, Centro de Excelencia Severo Ochoa 2013-2017 SEV-2012-0208). J.P.M. and A.M. were supported by a grant from the Spanish Ministry of Economy and Competitiveness and FEDER (SAF2013-46077-R). E.Z. and G.J.F. are supported by the European Research Council (Synergy Grant 609989)
    corecore