27 research outputs found

    Identification of Potent EGFR Inhibitors from TCM Database@Taiwan

    Get PDF
    Overexpression of epidermal growth factor receptor (EGFR) has been associated with cancer. Targeted inhibition of the EGFR pathway has been shown to limit proliferation of cancerous cells. Hence, we employed Traditional Chinese Medicine Database (TCM Database@Taiwan) (http://tcm.cmu.edu.tw) to identify potential EGFR inhibitor. Multiple Linear Regression (MLR), Support Vector Machine (SVM), Comparative Molecular Field Analysis (CoMFA), and Comparative Molecular Similarities Indices Analysis (CoMSIA) models were generated using a training set of EGFR ligands of known inhibitory activities. The top four TCM candidates based on DockScore were 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid, and all had higher binding affinities than the control Iressa®. The TCM candidates had interactions with Asp855, Lys716, and Lys728, all which are residues of the protein kinase binding site. Validated MLR (r² = 0.7858) and SVM (r² = 0.8754) models predicted good bioactivity for the TCM candidates. In addition, the TCM candidates contoured well to the 3D-Quantitative Structure-Activity Relationship (3D-QSAR) map derived from the CoMFA (q² = 0.721, r² = 0.986) and CoMSIA (q² = 0.662, r² = 0.988) models. The steric field, hydrophobic field, and H-bond of the 3D-QSAR map were well matched by each TCM candidate. Molecular docking indicated that all TCM candidates formed H-bonds within the EGFR protein kinase domain. Based on the different structures, H-bonds were formed at either Asp855 or Lys716/Lys728. The compounds remained stable throughout molecular dynamics (MD) simulation. Based on the results of this study, 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid are suggested to be potential EGFR inhibitors.National Science Council of Taiwan (NSC 99-2221-E-039-013-)Committee on Chinese Medicine and Pharmacy (CCMP100-RD-030)China Medical University (CMU98-TCM)China Medical University (CMU99-TCM)China Medical University (CMU99-S-02)China Medical University (CMU99-ASIA-25)China Medical University (CMU99-ASIA-26)China Medical University (CMU99-ASIA-27)China Medical University (CMU99-ASIA-28)Asia UniversityTaiwan Department of Health. Clinical Trial and Research Center of Excellence (DOH100-TD-B-111-004)Taiwan Department of Health. Cancer Research Center of Excellence (DOH100-TD-C-111-005

    Differential expression of centrosomal proteins at different stages of human glioma

    Get PDF
    BACKGROUND: High-grade gliomas have poor prognosis, requiring aggressive treatment. The aim of this study is to explore mitotic and centrosomal dysregulation in gliomas, which may provide novel targets for treatment. METHODS: A case-control study was performed using 34 resected gliomas, which were separated into low- and high-grade groups. Normal human brain tissue was used as a control. Using immunohistochemical analysis, immunofluorescent microscopy, and RT-PCR, detection of centrins 1 and 2, γ-tubulin, hNinein, Aurora A, and Aurora B, expression was performed. Analysis of the GBM8401 glioma cell line was also undertaken to complement the in vivo studies. RESULTS: In high-grade gliomas, the cells had greater than two very brightly staining centrioles within large, atypical nuclei, and moderate-to-strong Aurora A staining. Comparing with normal human brain tissue, most of the mRNAs expression in gliomas for centrosomal structural proteins, including centrin 3, γ-tubulin, and hNinein isoforms 1, 2, 5 and 6, Aurora A and Aurora B were elevated. The significant different expression was observed between high- and low-grade glioma in both γ-tubulin and Aurora A mRNA s. In the high-grade glioma group, 78.6% of the samples had higher than normal expression of γ-tubulin mRNA, which was significantly higher than in the low-grade glioma group (18.2%, p < 0.05). CONCLUSIONS: Markers for mitotic dysregulation, such as supernumerary centrosomes and altered expression of centrosome-related mRNA and proteins were more frequently detected in higher grade gliomas. Therefore, these results are clinically useful for glioma staging as well as the development of novel treatments strategies

    BPR1K653, a Novel Aurora Kinase Inhibitor, Exhibits Potent Anti-Proliferative Activity in MDR1 (P-gp170)-Mediated Multidrug-Resistant Cancer Cells

    Get PDF
    Over-expression of Aurora kinases promotes the tumorigenesis of cells. The aim of this study was to determine the preclinical profile of a novel pan-Aurora kinase inhibitor, BPR1K653, as a candidate for anti-cancer therapy. Since expression of the drug efflux pump, MDR1, reduces the effectiveness of various chemotherapeutic compounds in human cancers, this study also aimed to determine whether the potency of BPR1K653 could be affected by the expression of MDR1 in cancer cells.BPR1K653 specifically inhibited the activity of Aurora-A and Aurora-B kinase at low nano-molar concentrations in vitro. Anti-proliferative activity of BPR1K653 was evaluated in various human cancer cell lines. Results of the clonogenic assay showed that BPR1K653 was potent in targeting a variety of cancer cell lines regardless of the tissue origin, p53 status, or expression of MDR1. At the cellular level, BPR1K653 induced endo-replication and subsequent apoptosis in both MDR1-negative and MDR1-positive cancer cells. Importantly, it showed potent activity against the growth of xenograft tumors of the human cervical carcinoma KB and KB-derived MDR1-positive KB-VIN10 cells in nude mice. Finally, BPR1K653 also exhibited favorable pharmacokinetic properties in rats.BPR1K653 is a novel potent anti-cancer compound, and its potency is not affected by the expression of the multiple drug resistant protein, MDR1, in cancer cells. Therefore, BPR1K653 is a promising anti-cancer compound that has potential for the management of various malignancies, particularly for patients with MDR1-related drug resistance after prolonged chemotherapeutic treatments

    3-[2-((2S)-2-Cyano-pyrrolidin-1-yl)-2-oxo-ethylamino]-3-methyl-butyramide analogues as selective DPP-IV inhibitors for the treatment of type-II diabetes

    No full text
    [[abstract]]Based on the structures of NVP-DPP728 (1) and NVP-LAF237 (Vildagliptin, 2), three series of DPP-IV inhibitors were synthesized by linking substituted anilines, benzylamines, and phenylethylamines to (2S)-cyanopyrrolidine through a linker. More than 20 compounds were evaluated for their in vitro DPP-IV inhibition and selectivity profile over DPP-II, DPP8, and FAP enzymes. Selected compounds 5f and 7i showed in vivo plasma DPP-IV inhibition and inhibited glucose excursion in OGTT after oral administration in Wistar rats. Compound 5f (DPP-1V IC50 = 116 nM) has the potential for development as antidiabetic agent. (c) 2006 Elsevier Ltd. All rights reserved

    Identification, SAR studies, and X-ray Co-crystallographic analysis of a novel furanopyrimidine aurora kinase a inhibitor

    No full text
    [[abstract]]Herein we reveal a simple method for the identification of novel Aurora kinase A inhibitors through substructure searching of an in-house compound library to select compounds for testing. A hydrazone fragment conferring Aurora kinase activity and heterocyclic rings most frequently reported in kinase inhibitors were used as substructure queries to filter the in-house compound library collection prior to testing. Five new series of Aurora kinase inhibitors were identified through this strategy, with IC50 values ranging from ? 300 nm to ? 15 μm, by testing only 133 compounds from a database of ? 125 000 compounds. Structure-activity relationship studies and X-ray co-crystallographic analysis of the most potent compound, a furanopyrimidine derivative with an IC50 value of 309 nm toward Aurora kinase A, were carried out. The knowledge gained through these studies could help in the future design of potent Aurora kinase inhibitors

    Fast-forwarding hit to lead: Aurora and epidermal growth factor receptor kinase inhibitor lead identification

    No full text
    [[abstract]]A focused library of furanopyrimidine (350 compounds) was rapidly synthesized in parallel reactors and in situ screened for Aurora and epidermal growth factor receptor (EGFR) kinase activity, leading to the identification of some interesting hits. On the basis of structural biology observations, the hit 1a was modified to better fit the back pocket, producing the potent Aurora inhibitor 3 with submicromolar antiproliferative activity in HCT-116 colon cancer cell line. On the basis of docking studies with EGFR hit 1s, introduction of acrylamide Michael acceptor group led to 8, which inhibited both the wild and mutant EGFR kinase and also showed antiproliferative activity in HCC827 lung cancer cell line. Furthermore, the X-ray cocrystal study of 3 and 8 in complex with Aurora and EGFR, respectively, confirmed their hypothesized binding modes. Library construction, in situ screening, and structure-based drug design (SBDD) strategy described here could be applied for the lead identification of other kinases

    Aurora kinase A inhibitors: Identification, SAR exploration and molecular modeling of 6,7-dihydro-4H-pyrazolo-[1,5-a]pyrrolo[3,4-d]pyrimidine-5,8-dione scaffold

    No full text
    [[abstract]]Tricyclic 6,7-dihydro-4H-pyrazolo[1,5-a]pyrrolo[3,4-d]pyrimidine-5,8-dione was identified as a novel scaffold for Aurora kinase A inhibition through virtual screening. SAR exploration coupled with molecular modeling of 8a reveals the minimum pharmacophore requirements for Aurora kinase A inhibition. (c) 2008 Elsevier Ltd. All rights reserved

    Structure-based drug design of novel aurora kinase a inhibitors: Structural basis for potency and specificity

    No full text
    [[abstract]]Aurora kinases have emerged as attractive targets for the design of anticancer drugs. Through structure- based virtual screening, novel pyrazole hit 8a was identified as Aurora kinase A inhibitor (IC50 = 15.1 μM). X-ray cocrystal structure of 8a in complex with Aurora A protein revealed the C-4 position ethyl carboxylate side chain as a possible modification site for improving the potency. On the basis of this insight, bioisosteric replacement of the ester with amide linkage and changing the ethyl substituent to hydrophobic 3-acetami- dophenyl ring led to the identification of 12w with a ~450-fold improved Aurora kinase A inhibition potency (lC50 = 33 nM), compared to 8a. Compound 12w showed selective inhibition of Aurora A kinase over Aurora B/C, which might be due to the presence of a unique H-bond interaction between the 3-acetamido group and the Aurora A nonconserved Thr217 residue, which in Aurora B/C is Glu and found to sterically clash with the 3-acetamido group in modeling studies

    Advances in Aurora kinase inhibitor patents

    No full text
    [[abstract]]Background: Aurora-A, Aurora-B and Aurora-C, members of serine/threonine kinase family, play an important role in mitosis. They are essential for spindle assembly, centrosome maturation, chromosomal segregation and cytokinesis during mitosis. Abnormalities in the mitotic process as a result of overexpression/amplification of Aurora kinase have been linked to genomic instability leading to tumorigenesis. Hence, the use of Aurora kinase small-molecule inhibitors as a potential molecular-targeted therapeutic intervention for cancer is being pursued. Objective: A number of reviews focus on the biology of Aurora kinase; a few focus on the medicinal chemistry aspect of Aurora kinase inhibitor development. Here, we review the medicinal chemistry aspect of Aurora kinase inhibitors, with a particular emphasis on the patent literature. Method: The Scifinder? and Delphion? databases were used to search the literature for Aurora kinase inhibitors. Approximately 150 patents and 700 journal references are available, most of them published in the last 5 years. Conclusion/results: Analysis of the literature reveals three common strategies utilized by different groups in developing Aurora kinase inhibitors. These are discussed in detail and could be of use to medicinal chemists in laying out new strategies for developing novel Aurora kinase inhibitors

    Synthesis, beta-adrenergic receptor binding and antihypertensive potential of vanillin-derived phenoxypropanolamines

    No full text
    [[abstract]]Synthesis of vanillin-derived phenoxypropanolamines is carried out by condensing 4-hydroxy-3-methoxybenzaldehyde (vanillin) 1 with epichlorohydrin, followed by treatment with iso-propylamine or tert-butylamine to open the epoxy ring. Percentage inhibition of [H-3]dihydroalprenolol binding to both beta(1)- and beta(2)-adrenergic receptors by the newly synthesized compounds is assessed in vitro using turkey erythrocyte membrane (PI) and lung homogenate of rats A). Formyl derivatives 8 and 9 showed maximum inhibitory effect in binding assay and are non-selective similar to propranolol. On the other-hand, aldoxime compounds 10 and 11 have preference for PI-adrenergic receptors similar to atenolol. Also four of the compounds 8-11 are evaluated for their anti-hypertensive potential, in left renal artery ligation and fructose induced hypertension models. 4-(3-tert-Butylamino-2-hydroxy-propoxy)-3-methoxy-benzaldehydeoxime 11 shows antihypertensive effect better than propranolol
    corecore