11 research outputs found

    Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells

    Get PDF
    Post-transcriptional modification of RNA nucleosides occurs in all living organisms. Pseudouridine, the most abundant modified nucleoside in non-coding RNAs, enhances the function of transfer RNA and ribosomal RNA by stabilizing the RNA structure. Messenger RNAs were not known to contain pseudouridine, but artificial pseudouridylation dramatically affects mRNA function—it changes the genetic code by facilitating non-canonical base pairing in the ribosome decoding centre. However, without evidence of naturally occurring mRNA pseudouridylation, its physiological relevance was unclear. Here we present a comprehensive analysis of pseudouridylation in Saccharomyces cerevisiae and human RNAs using Pseudo-seq, a genome-wide, single-nucleotide-resolution method for pseudouridine identification. Pseudo-seq accurately identifies known modification sites as well as many novel sites in non-coding RNAs, and reveals hundreds of pseudouridylated sites in mRNAs. Genetic analysis allowed us to assign most of the new modification sites to one of seven conserved pseudouridine synthases, Pus1–4, 6, 7 and 9. Notably, the majority of pseudouridines in mRNA are regulated in response to environmental signals, such as nutrient deprivation in yeast and serum starvation in human cells. These results suggest a mechanism for the rapid and regulated rewiring of the genetic code through inducible mRNA modifications. Our findings reveal unanticipated roles for pseudouridylation and provide a resource for identifying the targets of pseudouridine synthases implicated in human disease.American Cancer Society (Robbie Sue Mudd Kidney Cancer Research Scholar Grant RSG-13-396-01-RMC)National Institutes of Health (U.S.) (GM094303)National Institutes of Health (U.S.) (GM081399)American Cancer Society. New England Division (Ellison Foundation Postdoctoral Fellowship)American Cancer Society (Postdoctoral Fellowship PF-13-319-01-RMC)National Institutes of Health (U.S.) (Pre-doctoral Training Grant T32GM007287

    Personalized Medicine for Hereditary Deafness

    No full text
    Hearing loss is the most common sensory disorder around the world. Genetic factors account for at least 50 % of congenital or prelingual onset deafness. While the clinical phenotype, deafness, is shared and similar across different individuals, the substantial genetic heterogeneity makes the genetic etiology in individual cases rare. Identification of genetic causes has been central to a growing body of knowledge related to diagnostic tools, genetic testing and clinical categorization systems. We will provide an overview of the current state of knowledge and future directions that are guiding the concept of personalized medicine for the deaf individuals

    Translation matters: protein synthesis defects in inherited disease

    No full text
    The list of genetic diseases caused by mutations that affect mRNA translation is rapidly growing. Although protein synthesis is a fundamental process in all cells, the disease phenotypes show a surprising degree of heterogeneity. Studies of some of these diseases have provided intriguing new insights into the functions of proteins involved in the process of translation; for example, evidence suggests that several have other functions in addition to their roles in translation. Given the numerous proteins involved in mRNA translation, it is likely that further inherited diseases will turn out to be caused by mutations in genes that are involved in this complex process.<br/

    Organolead Compounds

    No full text
    corecore