21 research outputs found

    Enzymatic Primer-Extension with Glycerol-Nucleoside Triphosphates on DNA Templates

    Get PDF
    selection. Template-dependent GNA synthesis is essential to any GNA-based selection system.In this study, we investigated the ability of various DNA polymerases to use glycerol-nucleoside triphosphates (gNTPs) as substrates for GNA synthesis on DNA templates. Therminator DNA polymerase catalyzes quantitative primer-extension by the incorporation of two glyceronucleotides, with much less efficient extension up to five glyceronucleotides. Steady-state kinetic experiments suggested that GNA synthesis by Therminator was affected by both decreased catalytic rates and weakened substrate binding, especially for pyrimidines. In an attempt to improve pyrimidine incorporation by providing additional stacking interactions, we synthesized two new gNTP analogs with 5-propynyl substituted pyrimidine nucleobases. This led to more efficient incorporation of gC, but not gT.We suggest that directed evolution of Therminator might lead to mutants with improved substrate binding and catalytic efficiency

    Drosophila selenophosphate synthetase 1 regulates vitamin B6 metabolism: prediction and confirmation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are two selenophosphate synthetases (SPSs) in higher eukaryotes, SPS1 and SPS2. Of these two isotypes, only SPS2 catalyzes selenophosphate synthesis. Although SPS1 does not contain selenophosphate synthesis activity, it was found to be essential for cell growth and embryogenesis in <it>Drosophila</it>. The function of SPS1, however, has not been elucidated.</p> <p>Results</p> <p>Differentially expressed genes in <it>Drosophila </it>SL2 cells were identified using two-way analysis of variance methods and clustered according to their temporal expression pattern. Gene ontology analysis was performed against differentially expressed genes and gene ontology terms related to vitamin B6 biosynthesis were found to be significantly affected at the early stage at which megamitochondria were not formed (day 3) after <it>SPS1 </it>knockdown. Interestingly, genes related to defense and amino acid metabolism were affected at a later stage (day 5) following knockdown. Levels of pyridoxal phosphate, an active form of vitamin B6, were decreased by <it>SPS1 </it>knockdown. Treatment of SL2 cells with an inhibitor of pyridoxal phosphate synthesis resulted in both a similar pattern of expression as that found by <it>SPS1 </it>knockdown and the formation of megamitochondria, the major phenotypic change observed by <it>SPS1 </it>knockdown.</p> <p>Conclusions</p> <p>These results indicate that SPS1 regulates vitamin B6 synthesis, which in turn impacts various cellular systems such as amino acid metabolism, defense and other important metabolic activities.</p

    A Template-Dependent Dislocation Mechanism Potentiates K65R Reverse Transcriptase Mutation Development in Subtype C Variants of HIV-1

    Get PDF
    Numerous studies have suggested that the K65R reverse transcriptase (RT) mutation develops more readily in subtype C than subtype B HIV-1. We recently showed that this discrepancy lies partly in the subtype C template coding sequence that predisposes RT to pause at the site of K65R mutagenesis. However, the mechanism underlying this observation and the elevated rates of K65R development remained unknown. Here, we report that DNA synthesis performed with subtype C templates consistently produced more K65R-containing transcripts than subtype B templates, regardless of the subtype-origin of the RT enzymes employed. These findings confirm that the mechanism involved is template-specific and RT-independent. In addition, a pattern of DNA synthesis characteristic of site-specific primer/template slippage and dislocation was only observed with the subtype C sequence. Analysis of RNA secondary structure suggested that the latter was unlikely to impact on K65R development between subtypes and that Streisinger strand slippage during DNA synthesis at the homopolymeric nucleotide stretch of the subtype C K65 region might occur, resulting in misalignment of the primer and template. Consequently, slippage would lead to a deletion of the middle adenine of codon K65 and the production of a -1 frameshift mutation, which upon dislocation and realignment of the primer and template, would lead to development of the K65R mutation. These findings provide additional mechanistic evidence for the facilitated development of the K65R mutation in subtype C HIV-1

    Novel Inducers of Fetal Globin Identified through High Throughput Screening (HTS) Are Active In Vivo in Anemic Baboons and Transgenic Mice

    Get PDF
    We thank Sarah Haigh, Ada Kane, Nicole Reuter, David Carey, and Marilyn Perry Carey for dedicated and expert technical assistance and Cloret Carl for assistance with preparation of the manuscript.This work was supported by grants from the National Institutes of Health, R01 DK-52962, (SPP, Boston University), R41 HL-105816 (SPP, Phoenicia BioSciences), and R42 HL-110727 (Phoenicia BioSciences), 2 P40 ODO010988-16 (GLW, University of Oklahoma) and UL1-TR000157 (RFW, University of Oklahoma). SMN was supported by P50 HL-118006. The funders had no role in study design, data collection or analysis, decision to publish, or preparation of the manuscript.High-level fetal (Ξ³) globin expression ameliorates clinical severity of the beta (Ξ²) hemoglobinopathies, and safe, orally-bioavailable Ξ³-globin inducing agents would benefit many patients. We adapted a LCR-Ξ³-globin promoter-GFP reporter assay to a high-throughput robotic system to evaluate five diverse chemical libraries for this activity. Multiple structurally- and functionally-diverse compounds were identified which activate the Ξ³-globin gene promoter at nanomolar concentrations, including some therapeutics approved for other conditions. Three candidates with established safety profiles were further evaluated in erythroid progenitors, anemic baboons and transgenic mice, with significant induction of Ξ³-globin expression observed in vivo. A lead candidate, Benserazide, emerged which demonstrated > 20-fold induction of Ξ³-globin mRNA expression in anemic baboons and increased F-cell proportions by 3.5-fold in transgenic mice. Benserazide has been used chronically to inhibit amino acid decarboxylase to enhance plasma levels of L-dopa. These studies confirm the utility of high-throughput screening and identify previously unrecognized fetal globin inducing candidates which can be developed expediently for treatment of hemoglobinopathies.Yeshttp://www.plosone.org/static/editorial#pee

    Determining Steady-State Kinetics of DNA Polymerase Nucleotide Incorporation

    No full text
    Polymerase enzymes catalyze the replication of DNA by incorporating deoxynucleoside monophosphates (dNMPs) into a primer strand in a 5β€² to 3β€² direction. Monitoring kinetic aspects of this catalytic process provides mechanistic information regarding polymerase-mediated DNA synthesis and the influences of nucleobase structure. For example, a range of polymerases have different capacities to synthesize DNA depending on the structure of the inserted dNMP (natural or synthetic) and also depending on the templating DNA base (modified vs. unmodified). Under steady-state conditions, relative rates depend on the deoxynucleoside triphosphate (dNTP) residence times in the ternary (polymerase-DNA-dNTP) complex. This chapter describes a method to measure steady-state incorporation efficiencies by which polymerase enzymes insert dNMPs into primer-template (P/T) oligonucleotides. The method described involves the use of a primer oligonucleotide 5β€² radiolabeled with [Ξ³-32P]ATP. Significant established applications of this experiment include studies regarding mechanisms of nucleotide misincorporation as a basis of chemically induced DNA mutation. Further, it can provide information important in various contexts ranging from biophysical to medical-based studies.ISSN:1064-3745ISSN:1940-602
    corecore